Toshio Ito: Cognitive vision for driving environment categorization using network-type fusion,20th ITS World Congress Tokyo 2013. Intelligent Transportation Society of America(2013)
Zhengyou Zhang: Microsoft Kinect Sensor and Its Effect, February 2012,IEEE Multimedia 19(2):4-10(2012)
Gunnar Farneback:Two-Frame Motion Estimation Based on Polynomial Expansion, Proceedings of the 13th Scandinavian Conference on Image Analysis, pp.363-370 (2003)
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Advances in Neural Information Processing Systems 28, pp.1-10 (2015)
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi : You Only Look Once: Unified, Real-Time Object Detection, Computer Vision and Pattern Recognition, pp.798-788 (2016)
Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg : SSD: Single Shot MultiBox Detector, European Conference on Computer Vision, pp.1-15 (2016)
B. Ristic, S. Arulampalam, and N. Gordon:Beyond the Kalman Filter: Particle Filters for Tracking Applications, Norwood, MA: Artech House(2004)
Rudolph van der Merwe, Nando de Freitas, Arnaud Doucet, and Eric Wan : The unscented particle filter, In Advances in Neural Information Processing Systems 13 (2001)
Zhang H, Miao Q, Zhang X, Liu Z : An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction, Microelectron Reliab 2018;81:288-98(2018)
Comaniciu, D., Ramesh, V., and Meer : Kernel-based object tracking, IEEE Trans. Patt. Analy. Mach. Intell. 25, pp.564-575(2003)
E. Wan and R. van der Merwe : Kalman Filtering and Neural Networks, (chap. 7), S. Haykin Ed. New York: Wiley(2001)
L. Q. Li, H. B. Ji, and J. H. Luo : The iterated extended Kalman particle filter, in Proc. IEEE Int. Symp. Communications and Information Technology, vol. 2, Beijing, China, pp. 1213-1216 (2005)
Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li : Pv-rcnn: Pointvoxel feature set abstraction for 3d object detection, In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)(2020)