進士, 磁気軸受 基礎と応用, 精密工学会誌, 78 巻, 12 号, pp. 1054-1057(2012)
野波健蔵, 磁気浮上・磁気軸受制御の現状と制御理論, 計測と制御, 32巻, 4 号, pp. 301-308(1993)
電気学会磁気浮上技術調査専門委員会編,磁気浮上技術の原理と応用,科学情報出版(2018)
Schweitzer, Bleuler, Trixler, Active Magnetic Bearings, ETH Zurich(1994)
Kato, Inoue, Takagi, Yabui, Nonlinear Analysis for Influence of Parametric Uncertainty on the Stability of Rotor System with Active Magnetic Bearing Using Feedback Linearization, Journal of Computational and Nonlinear Dynamics, Vol. 13, Issue 7 (2018)
Srinivas, Tiwari, Kannababu, Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review, Mechanical Systems and Signal Processing, Vol.106, pp. 537-572 (2018)
Schweitzer, G. and Maslen, Eric H, Magnetic Bearings - Theory, Design, and Application to Rotating Machinery, Springer-Verlag Berlin Heidelberg (2009)
Lindlau, Knospe, Feedback linearization of an active magnetic bearing with voltage control, IEEE Transactions on control systems technology, Vol. 10, No. 1, pp.21-31 (2002)
Chen, Knospe, Feedback linearization of active magnetic bearings: current-mode implementation, IEEE/ASME Transaction on Mechatronics, Vol. 10, No. 6, pp. 632-639 (2005)
Srinivasan, Cho, Modeling and system identification of active magnetic bearing systems, Proceedings of International Conference on Control Applications, pp. 252-260 (1995)
Sun, He, Zhao, Shi, Zhao, Yu, Identification of active magnetic bearing system with a flexible rotor, Mechanical Systems and Signal Processing, Vol. 49, No.1-2, pp. 302-316 (2014)
Mohd-Mokhtar, Wang, System identification of MIMO magnetic bearing via continuous time and frequency response data, Proceedings of IEEE International Conference on Mechatronics 2005, pp. 191-196 (2005)
Doyle, J. C., Francis, B. A. and Tannenbaum, A. R, Feedback Control Theory, Dover Publications (1992)
Messner, W. C., Bedillion, M. D. , Xia, L., Karns, D. C., Lead and Lag Compensators with Complex Poles and Zeros, IEEE Control Systems Magazine, Vol. 27, No. 1, pp.44-54, (2007)
Messner, W. C., Classical control revisited: Variations on a theme, Proceedings of the Advanced Motion Control 10th IEEE International Workshop, pp. 15-20 (2008)
Neil K. Rutland, Patrick S. Keogh, Clifford R. Burrows, Controlling Synchronous Vibration in Flexible Rotor-Bearing Systems Via Convex Programming, IFAC Proceedings Volumes, Vol. 29, Issue 1, pp. 457-462 (1996).
Wei, Söffker, Controller Design and Optimization for Rotor System Supported by Active Magnetic Bearings, Universitätsbibliothek Duisburg-Essen (2015)
Lauridsen, J. S., and Santos, I. F., Design of Active Magnetic Bearing Controllers for Rotors Subjected to Gas Seal Forces, Journal of Dynamic Systems, Measurement, and Control, vol. 140, No.9, (2018).
Losch, Identification and Automated Controller Design for Active Magnetic Bearing Systems, Swiss Federal Institute of Technology Zurich, Dissertation (2002)
足立,制御のためのシステム同定,東京電機大学出版局(1996)
足立,システム同定の基礎,東京電機大学出版局(2009)
Maruyama, Y., Mizuno, T., Takasaki, M., Ishino, Y., Kameno, H., Kubo, A., Application of Rotor Unbalance Compensation to an AMB-Based Gyroscopic Sensor, Journal of System Design and Dynamics, 3 巻, 4 号, pp. 572-583 (2009)
Li B. Unbalanced vibration control of active magnetic bearing using an active disturbance rejection notch decoupling technique. Journal of Vibration and Control. online-first (2023)
Setiawan, J. D., Mukherjee, R., Maslen, E. H, Synchronous Sensor Runout and Unbalance Compensation in Active Magnetic Bearings Using Bias Current Excitation, ASME, Journal of Dynamic Systems Measurement and Control, Vol124, No.1, pp.14?24 (2001).
Kim, C. S., Lee, C.W., In situ runout identification in active magnetic bearing system by extended influence coefficient method, IEEE/ASME Transactions on Mechatronics, Vol.2, No.1, pp. 51-57 (1997)
Yoo, S. y., Lee, W. r., Bae, Y. c., Noh, M. D., Optimal Notch filter for active magnetic bearing controllers, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 707-711 (2011).
Zheng, S., Chen, Q., Ren, H., Active Balancing Control of AMB Rotor Systems Using a Phase-Shift Notch Filter Connected in Parallel Mode, IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, pp. 3777-3785 (2016).
R. Herzog, P. Buhler, C. Gahler and R. Larsonneur, ”Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings,” in IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 580-586, Sept. 1996, doi: 10.1109/87.531924.
Bodson, M., Sacks, A. and Khosla, P., 1994. Harmonic Generation in Adaptive Feedforward Cancellation Schemes, IEEE Transactions on automatic control, Vol.39(9), 1939-1944.
Yabui, S. and Inoue, T., 2019, Development of optimal controller design method to compensate for vibrations caused by unbalanced force in rotor system based on Nyquist diagram. Journal of Vibration and Control, Vol. 25(4), pp.793-805.
S. Yabui, T. Inoue, Development of a Measurement System for Analyzing Periodic External Forces Acting on Rotating Machineries, Journal of Dynamic Systems, Measurement, and Control Vol. 141, No. 10 (2019)
Ota, A., Yabui, S., Inoue, T., Heya, A., High-Precision Trajectory Tracking Control of a Multi-Frequency Whirling Orbit Using Adaptive Feedforward Cancellation for the Efficient Experimental Estimation of Fluid Force, Journal of Dynamic Systems, Measurement, and Control, Vol. 144, Issue 2, 7 pages (2022).
Chiacchiarini, H. G., Mandolesi, P. S., Unbalance compensation for active magnetic bearings using ILC, Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 58-63 (2001)
Yabui S, Inoue T. Development of optimal controller design method to compensate for vibrations caused by unbalanced force in rotor system based on Nyquist diagram. Journal of Vibration and Control, Vol.25, No.4, pp. 793-805 (2019)
Shi, J., Zmood, R., Qin, L., Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals, Control Engineering Practice, Vol.12, Issue 3, pp. 283-290 (2004)
Yabui, S., Inoue, T., Development of Adaptive Feed-Forward Cancellation with Frequency Estimation Algorithm for Compensation of Periodic Disturbance at Arbitrary Frequency, Journal of Dynamic Systems, Measurement, and Control, Vol.141, No.12 (2019)
Kisaka, M., Adaptive notch filter by using a frequency chasing filter, Proceedings of Technical Meeting on Industrial Instrumentation and Control, IEE Japan, pp.27-30 (2006).
Eagle Industry Co, L.,Ekk Technologies, Mechanical Seal, Eagle Industry Co, Ltd., Tokyo, Japan, accessed Sep 24, 2023, https://www.ekkeagle.com/en/technology/mechanical/
Iwatsubo T., Sheng B.C., Matsumoto T. 1989, An Experimental Study on the Static and Dynamic Characteristics of Pump Annular Seals: 2nd Report, The Dynamic Characteristics for Small Concentric Whirling Motion, Transactions of the Japan Society of Mechanical Engineers Series C, Vol.55 (510), 317-322 (in Japanease).
Childs D. anf Vance J., 1997, Annular Gas Seals and Rotordynamics of Compressors and Turbines, Proceedings of the 26th Turbomachinery Symposium, pp. 201-220.
San Andres, L., 2006, Annular Pressure Seals and Hydrostatic Bearings. In Design and Analysis of High Speed Pumps, Educational Notes RTO-EN-AVT-143(11), pp. 11-1-11-36.
Satyam S. G. and Mihir K. G., 2010, Dynamic and Static Characteristics of Wavy Annular Seals in Turbulent Flow, Tribology Online, Vol.5(1), pp.7-18.
Childs, D. W., Torres, J. M., and Bullock, J. T., 2018, Static and Rotordynamic Characteristics of Liquid Annular Seals With a Circumferentially-Grooved Stator and Smooth Rotor Using Three Levels of Circumferential Inlet-Fluid Rotation. Proceedings of the ASME Turbo Expo 2018, Oslo, Norway. June 11-15, 2018.
Zhou W., Wu G., Qiu, N., Liu S. and Lai Z., 2019, Influence of Exit-Recovery Coefficient on the Leakage and Dynamic Characteristics of Annular Seal, Arabian Journal for Science and Engineering, Vol.44(2), 1293-1303.
Yun, H. and Brennen, C. E., Fluid flow equations for rotordynamic flows in seals and leakage paths, Journal of fluids engineering, Vol.124, No.1, pp.176-181 (2002)
西嶋,遠藤,山口,回転機械の軸シールで発生する不安定流体力の数 値解析(シール長さとギャップの影響),日本機械学会論文集, Vol. 80,No. 816, p. FE0226 (2014)
Zutavern, Z. S., Childs, D. W., Identification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings, Proceedings of the ASME Turbo Expo 2007, Vol. 5, pp. 895-902 (2007)
Voigt, A. J., Mandrup-Poulsen, C., Nielsen, K. K., and Santos, I.F., 2016, Design and Calibration of a Full Scale Active Magnetic Bearing Based Test Facility for Investigating Rotordynamic Properties of Turbomachinery Seals in Multiphase Flow, Proceedings of the ASME Turbo Expo 2016, Vol. 7B (2016).
Voigt, A. J., Towards Identification of Rotordynamic Properties for Seals in Multiphase Flow Using Active Magnetic Bearings. Design and Commissioning of a Novel Test Facility. DCAMM Report, No.S212, (2016)
Tokunaga, Y., Inoue, H., Hiromatsu, J., Iguchi, T., Kuroki, Y.,Uchiumi, M., Rotordynamic Characteristics of Floating Ring Seals in Rocket Turbopumps, Journal of International Journal of Fluid Machinery and Systems, Vol.9, No.3, 194-204 (2016)
Jonas L and Ilmar S., Design of robust AMB controllers for rotors subjected to varying and uncertain seal forces. Mechanical Engineering Journal, Vol.4, No.5, pp.1-12 (2017)
Lauridsen, J. S., and Santos, I. F., On-Site Identification of Dynamic Annular Seal Forces in Turbo Machinery Using Active Magnetic Bearings: An Experimental Investigation, ASME Journal of Engineering for Gas Turbines and Power, Vol.140, No.8, p. 082501(2018).
宇宙航空研究開発機構,ローターダイナミクス試験装置(JARTS),宇宙航空研究開発機構,角田宇宙センター,試験設備, accessed Sep 24, 2023, https://www.jaxa.jp/about/centers/kspc/files/kscp test facilities.pdf
Inoue, H., Yabui, S., Inoue, T., Characteristics of Rotordynamic Forces generated by Mechanical Seals. 18th International Symposium on Transport. Phenomena and Dynamics of Rotating Machinery. ISROMAC 18 (2020)
Yabui, S., Inoue, H., Inoue, T., Excitation System with Active Magnetic Bearing Control Performance Improvement for Rotordynamic Force Measurement, IEEE International Conference on Mechatronics (ICM2021), TF-001538 (2021)
Yabui, S., Inoue H., Inoue, T., Control scheme of adaptive feedforward cancellation considering of Bode’s integral theorem for synchronous vibration suppression in rotating machineries. Journal of Vibration and Control, Vol.27, No.21-22, 2586-2599 (2021)
Childs, D. W., and Wade, J., Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Seals - Measurements Versus Predictions, ASME Journal of Tribology. Vol.126, No.2: pp.326-333(2004)
Kanemori, Y. and Iwatsubo, T., Experimental Study of Dynamical Characteristics of a Long Annular Seal: Force and Moment Due to Conical Whirl Rotation, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 55, No.520, pp. 2974-2981 (1989)
Iwatsubo, T. and Ishimaru, H., Consideration of Whirl Frequency Ratio and Effective Damping Coefficient of Seal, Journal of System Design and Dynamics, Vol4, No.1, pp.177-188 (2010)
Mathworks, Curve Fitting Toolbox - Fit curves and surfaces to data using regression, interpolation, and smoothing, accessed Sep24, 2023. https://jp.mathworks.com/products/curvefitting.html