C. H. Bennett and R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am., vol. 253, no. 1, pp. 48–57, 1985.
E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys., vol. 21, no. 3–4, pp. 219–253, Apr. 1982, doi: 10.1007/BF01857727.
R. P. Feynman, “The Computing Machines in the Future,” in Nishina Memorial Lectures, vol. 746, in Lecture Notes in Physics, vol. 746. , Tokyo: Springer Japan, 2008, pp. 99–114. doi: 10.1007/978-4-431-77056-5_6.
R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys., vol. 21, no. 6–7, pp. 467–488, Jun. 1982, doi: 10.1007/BF02650179.
“Quantum theory, the Church–Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. Math. Phys. Sci., vol. 400, no. 1818, pp. 97–117, Jul. 1985, doi: 10.1098/rspa.1985.0070.
“Paul Dirac Medal and Prize recipients,” Paul Dirac Medal and Prize recipients | Institute of Physics. Accessed: Sep. 23, 2023. [Online]. Available: https://www.iop.org/about/awards/gold-medals/paul-dirac-medal-and-prize-recipients
P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA: IEEE Comput. Soc. Press, 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.
L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, Philadelphia, Pennsylvania, United States: ACM Press, 1996, pp. 212–219. doi: 10.1145/237814.237866.
A. Barenco et al., “Elementary gates for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467, Nov. 1995, doi: 10.1103/PhysRevA.52.3457.
M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information: 10th Anniversary Edition,” Higher Education from Cambridge University Press. Accessed: Sep. 23, 2023. [Online]. Available: https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, 1st ed. Cambridge University Press, 2009. doi: 10.1017/CBO9780511813948.
C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett., vol. 75, no. 25, pp. 4714–4717, Dec. 1995, doi: 10.1103/PhysRevLett.75.4714.
Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature, vol. 398, no. 6730, pp. 786–788, Apr. 1999, doi: 10.1038/19718.
D. P. Divincenzo, “Topics in Quantum Computers,” in Mesoscopic Electron Transport, L. L. Sohn, L. P. Kouwenhoven, and G. Schön, Eds., Dordrecht: Springer Netherlands, 1997, pp. 657–677. doi: 10.1007/978-94-015-8839-3_18.
“The Nobel Prize in Physics 2012,” NobelPrize.org. Accessed: Sep. 23, 2023. [Online]. Available: https://www.nobelprize.org/prizes/physics/2012/press-release/
J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018, doi: 10.22331/q-2018-08-06-79. [19] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, doi: 10.1038/s41586-019-1666-5.
Y. Bengio, Y. Lecun, and G. Hinton, “Deep learning for AI,” Commun. ACM, vol. 64, no. 7, pp. 58–65, Jul. 2021, doi: 10.1145/3448250.
D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016, doi: 10.1038/nature16961.
T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E, vol. 58, no. 5, pp. 5355–5363, Nov. 1998, doi: 10.1103/PhysRevE.58.5355.
E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm.” arXiv, Nov. 14, 2014. doi: 10.48550/arXiv.1411.4028.
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, Dec. 1997, doi: 10.1038/37539.
J.-G. Ren et al., “Ground-to-satellite quantum teleportation,” Nature, vol. 549, no. 7670, pp. 70–73, Sep. 2017, doi: 10.1038/nature23675.
A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?,” Phys. Rev., vol. 47, no. 10, pp. 777–780, May 1935, doi: 10.1103/PhysRev.47.777.
J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fiz., vol. 1, no. 3, pp. 195–200, Nov. 1964, doi: 10.1103/PhysicsPhysiqueFizika.1.195.
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett., vol. 23, no. 15, pp. 880–884, Oct. 1969, doi: 10.1103/PhysRevLett.23.880.
D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going Beyond Bell’s Theorem,” in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, Ed., Dordrecht: Springer Netherlands, 1989, pp. 69–72. doi: 10.1007/978-94-017-0849-4_10.
B. Hensen et al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, Oct. 2015, doi: 10.1038/nature15759.
M. Giustina et al., “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons,” Phys. Rev. Lett., vol. 115, no. 25, p. 250401, Dec. 2015, doi: 10.1103/PhysRevLett.115.250401.
L. K. Shalm et al., “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett., vol. 115, no. 25, p. 250402, Dec. 2015, doi: 10.1103/PhysRevLett.115.250402.
A. Aspect, “Closing the Door on Einstein and Bohr’s Quantum Debate,” Physics, vol. 8, p. 123, Dec. 2015, doi: 10.1103/Physics.8.123.
“The Nobel Prize in Physics 2022,” NobelPrize.org. Accessed: Sep. 23, 2023. [Online]. Available: https://www.nobelprize.org/prizes/physics/2022/press-release/
C.-C. Chen, S.-Y. Shiau, M.-F. Wu, and Y.-R. Wu, “Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines,” Sci. Rep., vol. 9, no. 1, p. 16251, Nov. 2019, doi: 10.1038/s41598-019-52275-6.
中山茂, 量子アルゴリズム. 技報堂出版, 2014.
N. D. Mermin, Quantum Computer Science: An Introduction. Cambridge: Cambridge University Press, 2007.
C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. 2006. Corr. 2nd printing 2011版. New York: Springer, 2006.
中川裕志 and 東京大学工学教程編纂委員会, 東京大学工学教程 情報工学 機械学習. 丸善出版, 2015.
杉山将, イラストで学ぶ 機械学習 最小二乗法による識別モデル学習を中心に. 講談社, 2013.
R. Koenker and K. F. Hallock, “Quantile Regression,” J. Econ. Perspect., vol. 15, no. 4, pp. 143–156, Dec. 2001, doi: 10.1257/jep.15.4.143.
H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support Vector Regression Machines,” in Advances in Neural Information Processing Systems, MIT Press, 1996. Accessed: Sep. 30, 2023. [Online]. Available: https://papers.nips.cc/paper_files/paper/1996/hash/d38901788c533e8286cb6400b40b386d-Abstract.html
P. J. Huber, “Robust Estimation of a Location Parameter,” Ann. Math. Stat., vol. 35, no. 1, pp. 73–101, Mar. 1964, doi: 10.1214/aoms/1177703732.
C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
岡谷貴之, 深層学習 改訂第2版. 講談社, 2022.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, Massachusetts: The MIT Press, 2016.
D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. Accessed: Oct. 01, 2023. [Online]. Available: http://arxiv.org/abs/1412.6980
D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” Cogn. Sci., vol. 9, no. 1, pp. 75–112, 1985, doi: 10.1207/s15516709cog0901_5.
J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, vol. 5.1, University of California Press, 1967, pp. 281–298. Accessed: Sep. 30, 2023. [Online]. Available: https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
K. Najafi, S. F. Yelin, and X. Gao, “The Development of Quantum Machine Learning,” Harv. Data Sci. Rev., vol. 4, no. 1, Jan. 2022.
A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
I. Kerenidis and A. Prakash, “Quantum Recommendation Systems.” arXiv, Sep. 22, 2016. Accessed: Sep. 30, 2023. [Online]. Available: http://arxiv.org/abs/1603.08675
S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys., vol. 10, no. 9, pp. 631–633, Sep. 2014, doi: 10.1038/nphys3029.
P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector Machine for Big Data Classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503, Sep. 2014, doi: 10.1103/PhysRevLett.113.130503.
E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” 2014, doi: 10.48550/ARXIV.1411.4028.
J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New J. Phys., vol. 18, no. 2, p. 023023, Feb. 2016, doi: 10.1088/1367-2630/18/2/023023.
A. Kandala et al., “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, Sep. 2017, doi: 10.1038/nature23879.
P. J. J. O’Malley et al., “Scalable Quantum Simulation of Molecular Energies,” Phys. Rev. X, vol. 6, no. 3, p. 031007, Jul. 2016, doi: 10.1103/PhysRevX.6.031007.
E. Farhi and H. Neven, “Classification with Quantum Neural Networks on Near Term Processors,” 2018, doi: 10.48550/ARXIV.1802.06002.
I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nat. Phys., vol. 15, no. 12, pp. 1273–1278, Dec. 2019, doi: 10.1038/s41567-019-0648-8.
S. Lloyd and C. Weedbrook, “Quantum Generative Adversarial Learning,” Phys. Rev. Lett., vol. 121, no. 4, p. 040502, Jul. 2018, doi: 10.1103/PhysRevLett.121.040502.
D. Marković and J. Grollier, “Quantum neuromorphic computing,” Appl. Phys. Lett., vol. 117, no. 15, p. 150501, Oct. 2020, doi: 10.1063/5.0020014.
L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki, “Quantum reservoir computing with a single nonlinear oscillator,” Phys. Rev. Res., vol. 3, no. 1, p. 013077, Jan. 2021, doi: 10.1103/PhysRevResearch.3.013077.
斎藤三郎, 再生核の理論入門. 牧野書店, 2002.
R. Courant, Methods of Mathematical Physics Volume 1, Volume 1版. Weinheim: Wiley-VCH, 1989.
M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.
V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, Art. no. 7747, Mar. 2019, doi: 10.1038/s41586-019-0980-2.
D. K. Park, C. Blank, and F. Petruccione, “The theory of the quantum kernel-based binary classifier,” Phys. Lett. A, vol. 384, no. 21, p. 126422, Jul. 2020, doi: 10.1016/j.physleta.2020.126422.
V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic circuits,” in Proceedings of the 2005 Asia and South Pacific Design Automation Conference, in ASP-DAC ’05. New York, NY, USA: Association for Computing Machinery, Jan. 2005, pp. 272–275. doi: 10.1145/1120725.1120847.
K. Nakaji et al., “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators,” Phys. Rev. Res., vol. 4, no. 2, p. 023136, May 2022, doi: 10.1103/PhysRevResearch.4.023136.
M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, 2nd ed. 2021版. Cham: Springer, 2021.
情報処理学会出版委員会 and 嶋田義皓, 量子コンピューティング: 基本アルゴリズムから量子機械学習まで. オーム社, 2020.
A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
A. M. Childs, “Equation solving by simulation,” Nat. Phys., vol. 5, no. 12, Art. no. 12, Dec. 2009, doi: 10.1038/nphys1473.
S. Aaronson, “Read the fine print,” Nat. Phys., vol. 11, no. 4, Art. no. 4, Apr. 2015, doi: 10.1038/nphys3272.
A. C. Vazquez, R. Hiptmair, and S. Woerner, “Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation,” ACM Trans. Quantum Comput., vol. 3, no. 1, p. 2:1-2:37, Jan. 2022, doi: 10.1145/3490631.
S. S. Kavitha and N. Kaulgud, “Quantum K-means clustering method for detecting heart disease using quantum circuit approach,” Soft Comput., vol. 27, no. 18, pp. 13255–13268, Sep. 2023, doi: 10.1007/s00500-022-07200-x.
C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer, 2000. doi: 10.1007/978-1-4757-3264-1.
F. Pedregosa et al., “Scikit-learn: Machine Learning in Python.” arXiv, Jun. 05, 2018. doi: 10.48550/arXiv.1201.0490.
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309, Sep. 2018, doi: 10.1103/PhysRevA.98.032309.
M. Watabe, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Quantum Circuit Learning with Error Backpropagation Algorithm and Experimental Implementation,” Quantum Rep., vol. 3, no. 2, Art. no. 2, Jun. 2021, doi: 10.3390/quantum3020021.
J. C. Spall, “A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates,” in 1987 American Control Conference, 1987, pp. 1161–1167. doi: 10.23919/ACC.1987.4789489.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, Art. no. 6088, Oct. 1986, doi: 10.1038/323533a0.
J. Li, X. Yang, X. Peng, and C.-P. Sun, “Hybrid Quantum-Classical Approach to Quantum Optimal Control,” Phys. Rev. Lett., vol. 118, no. 15, p. 150503, Apr. 2017, doi: 10.1103/PhysRevLett.118.150503.
A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,” Nat Commun, vol. 5, no. 1, Art. no. 1, Jul. 2014, doi: 10.1038/ncomms5213.
E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm.” arXiv, Nov. 14, 2014. doi: 10.48550/arXiv.1411.4028.
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adiabatic Evolution.” arXiv, Jan. 28, 2000. doi: 10.48550/arXiv.quant-ph/0001106.
J. Barry, D. T. Barry, and S. Aaronson, “Quantum POMDPs,” Phys. Rev. A, vol. 90, no. 3, p. 032311, Sep. 2014, doi: 10.1103/PhysRevA.90.032311.
T. Kimura, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Quantum circuit architectures via quantum observable Markov decision process planning,” J. Phys. Commun., vol. 6, no. 7, p. 075006, Jul. 2022, doi: 10.1088/2399-6528/ac7d39.
T. Kimura, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experimental Implementation,” Mathematical Problems in Engineering, vol. 2021, p. e3511029, Dec. 2021, doi: 10.1155/2021/3511029.
R. Sutton and A. Barto, Reinforcement Learning, second edition: An Introduction, 第2版. Cambridge, Massachusetts: Bradford Books, 2018.
牧野貴樹 et al., これからの強化学習. 森北出版, 2016.
G. A. Cidre, “Planning in a quantum system,” Master Thesis, Carnegie Mellon University Pittsburgh, PA, 2016.
. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going Beyond Bell’s Theorem.” arXiv, Dec. 06, 2007. doi: 10.48550/arXiv.0712.0921.
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309, Sep. 2018, doi: 10.1103/PhysRevA.98.032309.
J. Li, X. Yang, X. Peng, and C.-P. Sun, “Hybrid Quantum-Classical Approach to Quantum Optimal Control,” Phys. Rev. Lett., vol. 118, no. 15, p. 150503, Apr. 2017, doi: 10.1103/PhysRevLett.118.150503.
J. C. Spall, “A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates,” in 1987 American Control Conference, 1987, pp. 1161–1167. doi: 10.23919/ACC.1987.4789489.
J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: an anytime algorithm for POMDPs,” in Proceedings of the 18th international joint conference on Artificial intelligence, in IJCAI’03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Aug. 2003, pp. 1025–1030.