書籍
書籍検索
送料無料

エンジニア入門シリーズ

Pythonではじめる量子AI入門
量子機械学習から量子回路自動設計まで

著: 曽我部 東馬 (電気通信大学)
定価: 3,960円(本体3,600円+税)
判型: B5変型
ページ数: 216 ページ
ISBN: 978-4-910558-32-5
発売日: 2024/8/21
管理No: 130

【目次】

第1章 量子コンピューティングの基礎

  1. 1.1 量子コンピュータの歴史
  2. 1.2 量子コンピュータの種類と開発状況
  3. 1.3 量子コンピューティングの基本要素
    1. 1.3.1 量子回路要素: 量子ビットの表記
    2. 1.3.2 量子ビットの基本演算
    3. 1.3.3 量子回路要素:量子ゲート
    4. 1.3.4 量子回路要素:2量子ビット以上量子ゲート
    5. 1.3.5 量子回路要素:量子測定
    6. 1.3.6 Pythonによる量子回路の作成
    7. 1.3.7 Pythonを用いた1量子ビット量子回路コンピューティング
    8. 1.3.8 2量子ビット以上のPython量子コンピューティング
  4. 1.4 量子アルゴリズム
    1. 1.4.1 量子加算アルゴリズム
    2. 1.4.2 量子もつれと量子テレポーテーション
    3. 1.4.3 量子もつれとEPRパラドックス (ベルの不等式、CHSHの不等式)
    4. 1.4.4 量子アルゴリズムの鍵:位相キックバック
    5. 1.4.5 量子フーリエ変換アルゴリズムの実装
    6. 1.4.6 量子位相推定アルゴリズムの実装
    7. 1.4.7 Deutsch-Jozsa量子アルゴリズムの実装
    8. 1.4.8 グローバーのアルゴリズムの実装
  5. まとめ
  6. 参考文献

第2章 機械学習と量子機械学習の導入

  1. 2.1 機械学習の基本法則:バイアスとバリアンス
  2. 2.2 教師あり学習
    1. 2.2.1 回帰と分類
    2. 2.2.2 学習モデルと代表的なアルゴリズム
  3. 2.3 教師なし学習-特徴抽出・クラスタリング・次元削減
    1. 2.3.1 次元削減とクラスタリングの等価性
    2. 2.3.2 行列方式による次元削減手法:主成分分析
    3. 2.3.3 競合学習クラスタリングによる次元削減
  4. 2.4 量子機械学習
  5. 2.5 NISQ時代における量子機械学習
  6. まとめ
  7. 参考文献

第3章 量子機械学習アルゴリズムⅠ

  1. 3.1 情報エンコーディング
    1. 3.1.1 基底エンコーディング
    2. 3.1.2 振幅エンコーディング
    3. 3.1.3 テンソル積エンコーディング
  2. 3.2 量子特徴マッピング
    1. 3.2.1 量子カーネルの導入
    2. 3.2.2 SWAPテストを用いた量子カーネル回路
    3. 3.2.3 データエンコード回路を利用した量子カーネル回路
  3. 3.3 Harrow-Hassidim-Lloyd (HHL) アルゴリズム
  4. 3.4 量子状態ベクトル距離計算
  5. 3.5 ハイブリッド型量子k-meansクラスタリング手法
  6. 3.6 量子カーネルSVM法
  7. 3.7 量子回路学習アルゴリズムの実装と応用例
  8. まとめ
  9. 参考文献

第4章 量子機械学習アルゴリズムⅡ

  1. 4.1 変分量子固有値ソルバー (VQE) の実装と応用例
  2. 4.2 量子近似最適化アルゴリズム (QAOA) の実装と応用例
  3. 4.3 AI駆動型量子回路自動設計
    1. 4.3.1 量子回路設計のQOMDP手法の概要
    2. 4.3.2 GHZ状態生成
  4. まとめ
  5. 参考文献

付録

  1. A 量子回路課題の解答
  2. B Google ColabでのQiskitのインストール方法および実行手順
  3. C 式(1.65)の証明
  4. D 式(1.74)の証明
  5. E 有限差分法
  6. F 同時摂動最適化法 (SPSA)
  7. G 量子部分観測マルコフ決定過程手法 (QOMDP)
    1. G.1 クラウス行列
    2. G.2 QOMDP
    3. G.3 QOMDPにおけるプランニングアルゴリズム
      1. G.3.1 価値関数
      2. G.3.2 プランニングアルゴリズム
      3. G.3.3 方策
  8. 参考文献

【参考文献】

  • C. H. Bennett and R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am., vol. 253, no. 1, pp. 48–57, 1985.
  • E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys., vol. 21, no. 3–4, pp. 219–253, Apr. 1982, doi: 10.1007/BF01857727.
  • R. P. Feynman, “The Computing Machines in the Future,” in Nishina Memorial Lectures, vol. 746, in Lecture Notes in Physics, vol. 746. , Tokyo: Springer Japan, 2008, pp. 99–114. doi: 10.1007/978-4-431-77056-5_6.
  • R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys., vol. 21, no. 6–7, pp. 467–488, Jun. 1982, doi: 10.1007/BF02650179.
  • “Quantum theory, the Church–Turing principle and the universal quantum computer,” Proc. R. Soc. Lond. Math. Phys. Sci., vol. 400, no. 1818, pp. 97–117, Jul. 1985, doi: 10.1098/rspa.1985.0070.
  • “Paul Dirac Medal and Prize recipients,” Paul Dirac Medal and Prize recipients | Institute of Physics. Accessed: Sep. 23, 2023. [Online]. Available: https://www.iop.org/about/awards/gold-medals/paul-dirac-medal-and-prize-recipients
  • P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA: IEEE Comput. Soc. Press, 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.
  • L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, Philadelphia, Pennsylvania, United States: ACM Press, 1996, pp. 212–219. doi: 10.1145/237814.237866.
  • A. Barenco et al., “Elementary gates for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467, Nov. 1995, doi: 10.1103/PhysRevA.52.3457.
  • M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information: 10th Anniversary Edition,” Higher Education from Cambridge University Press. Accessed: Sep. 23, 2023. [Online]. Available: https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
  • A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
  • “2017 ICTP Dirac Medallists Announced | ICTP.” Accessed: Sep. 23, 2023. [Online]. Available: https://www.ictp.it/news/2017/8/2017-ictp-dirac-medallists-announced
  • H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, 1st ed. Cambridge University Press, 2009. doi: 10.1017/CBO9780511813948.
  • C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstration of a Fundamental Quantum Logic Gate,” Phys. Rev. Lett., vol. 75, no. 25, pp. 4714–4717, Dec. 1995, doi: 10.1103/PhysRevLett.75.4714.
  • Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature, vol. 398, no. 6730, pp. 786–788, Apr. 1999, doi: 10.1038/19718.
  • D. P. Divincenzo, “Topics in Quantum Computers,” in Mesoscopic Electron Transport, L. L. Sohn, L. P. Kouwenhoven, and G. Schön, Eds., Dordrecht: Springer Netherlands, 1997, pp. 657–677. doi: 10.1007/978-94-015-8839-3_18.
  • “The Nobel Prize in Physics 2012,” NobelPrize.org. Accessed: Sep. 23, 2023. [Online]. Available: https://www.nobelprize.org/prizes/physics/2012/press-release/
  • J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018, doi: 10.22331/q-2018-08-06-79.
    [19] F. Arute et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, doi: 10.1038/s41586-019-1666-5.
  • “IBM Quantum,” IBM Quantum. Accessed: Sep. 23, 2023. [Online]. Available: https://quantum-computing.ibm.com/
  • “What Reaching 20 Qubits Means for Quantum Computing.” Accessed: Sep. 23, 2023. [Online]. Available: https://www.honeywell.com/us/en/news/2022/06/what-reaching-20-qubits-means-for-quantum-computing
  • “Welcome to Xanadu,” Xanadu. Accessed: Sep. 23, 2023. [Online]. Available: https://www.xanadu.ai/
  • Y. Bengio, Y. Lecun, and G. Hinton, “Deep learning for AI,” Commun. ACM, vol. 64, no. 7, pp. 58–65, Jul. 2021, doi: 10.1145/3448250.
  • D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016, doi: 10.1038/nature16961.
  • T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Phys. Rev. E, vol. 58, no. 5, pp. 5355–5363, Nov. 1998, doi: 10.1103/PhysRevE.58.5355.
  • E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm.” arXiv, Nov. 14, 2014. doi: 10.48550/arXiv.1411.4028.
  • “QIH 量子技術イノベーション拠点.” Accessed: Sep. 23, 2023. [Online]. Available: https://qih.riken.jp/
  • 宮野健次郎 and 古澤明, 量子コンピュータ入門 (第2版) , 第2版. 日本評論社, 2016.
  • “Qiskit.” Accessed: Sep. 24, 2023. [Online]. Available: https://qiskit.org
  • D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, Dec. 1997, doi: 10.1038/37539.
  • J.-G. Ren et al., “Ground-to-satellite quantum teleportation,” Nature, vol. 549, no. 7670, pp. 70–73, Sep. 2017, doi: 10.1038/nature23675.
  • A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?,” Phys. Rev., vol. 47, no. 10, pp. 777–780, May 1935, doi: 10.1103/PhysRev.47.777.
  • J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fiz., vol. 1, no. 3, pp. 195–200, Nov. 1964, doi: 10.1103/PhysicsPhysiqueFizika.1.195.
  • J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett., vol. 23, no. 15, pp. 880–884, Oct. 1969, doi: 10.1103/PhysRevLett.23.880.
  • D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going Beyond Bell’s Theorem,” in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, Ed., Dordrecht: Springer Netherlands, 1989, pp. 69–72. doi: 10.1007/978-94-017-0849-4_10.
  • B. Hensen et al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, Oct. 2015, doi: 10.1038/nature15759.
  • M. Giustina et al., “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons,” Phys. Rev. Lett., vol. 115, no. 25, p. 250401, Dec. 2015, doi: 10.1103/PhysRevLett.115.250401.
  • L. K. Shalm et al., “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett., vol. 115, no. 25, p. 250402, Dec. 2015, doi: 10.1103/PhysRevLett.115.250402.
  • A. Aspect, “Closing the Door on Einstein and Bohr’s Quantum Debate,” Physics, vol. 8, p. 123, Dec. 2015, doi: 10.1103/Physics.8.123.
  • “The Nobel Prize in Physics 2022,” NobelPrize.org. Accessed: Sep. 23, 2023. [Online]. Available: https://www.nobelprize.org/prizes/physics/2022/press-release/
  • C.-C. Chen, S.-Y. Shiau, M.-F. Wu, and Y.-R. Wu, “Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines,” Sci. Rep., vol. 9, no. 1, p. 16251, Nov. 2019, doi: 10.1038/s41598-019-52275-6.
  • 中山茂, 量子アルゴリズム. 技報堂出版, 2014.
  • N. D. Mermin, Quantum Computer Science: An Introduction. Cambridge: Cambridge University Press, 2007.
  • C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed. 2006. Corr. 2nd printing 2011版. New York: Springer, 2006.
  • 中川裕志 and 東京大学工学教程編纂委員会, 東京大学工学教程 情報工学 機械学習. 丸善出版, 2015.
  • 杉山将, イラストで学ぶ 機械学習 最小二乗法による識別モデル学習を中心に. 講談社, 2013.
  • R. Koenker and K. F. Hallock, “Quantile Regression,” J. Econ. Perspect., vol. 15, no. 4, pp. 143–156, Dec. 2001, doi: 10.1257/jep.15.4.143.
  • H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support Vector Regression Machines,” in Advances in Neural Information Processing Systems, MIT Press, 1996. Accessed: Sep. 30, 2023. [Online]. Available: https://papers.nips.cc/paper_files/paper/1996/hash/d38901788c533e8286cb6400b40b386d-Abstract.html
  • P. J. Huber, “Robust Estimation of a Location Parameter,” Ann. Math. Stat., vol. 35, no. 1, pp. 73–101, Mar. 1964, doi: 10.1214/aoms/1177703732.
  • C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
  • Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
  • 岡谷貴之, 深層学習 改訂第2版. 講談社, 2022.
  • I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, Massachusetts: The MIT Press, 2016.
  • D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. Accessed: Oct. 01, 2023. [Online]. Available: http://arxiv.org/abs/1412.6980
  • D. E. Rumelhart and D. Zipser, “Feature discovery by competitive learning,” Cogn. Sci., vol. 9, no. 1, pp. 75–112, 1985, doi: 10.1207/s15516709cog0901_5.
  • J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, vol. 5.1, University of California Press, 1967, pp. 281–298. Accessed: Sep. 30, 2023. [Online]. Available: https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
  • K. Najafi, S. F. Yelin, and X. Gao, “The Development of Quantum Machine Learning,” Harv. Data Sci. Rev., vol. 4, no. 1, Jan. 2022.
  • A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
  • I. Kerenidis and A. Prakash, “Quantum Recommendation Systems.” arXiv, Sep. 22, 2016. Accessed: Sep. 30, 2023. [Online]. Available: http://arxiv.org/abs/1603.08675
  • S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nat. Phys., vol. 10, no. 9, pp. 631–633, Sep. 2014, doi: 10.1038/nphys3029.
  • P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector Machine for Big Data Classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503, Sep. 2014, doi: 10.1103/PhysRevLett.113.130503.
  • E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm,” 2014, doi: 10.48550/ARXIV.1411.4028.
  • J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New J. Phys., vol. 18, no. 2, p. 023023, Feb. 2016, doi: 10.1088/1367-2630/18/2/023023.
  • A. Kandala et al., “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, Sep. 2017, doi: 10.1038/nature23879.
  • P. J. J. O’Malley et al., “Scalable Quantum Simulation of Molecular Energies,” Phys. Rev. X, vol. 6, no. 3, p. 031007, Jul. 2016, doi: 10.1103/PhysRevX.6.031007.
  • E. Farhi and H. Neven, “Classification with Quantum Neural Networks on Near Term Processors,” 2018, doi: 10.48550/ARXIV.1802.06002.
  • I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nat. Phys., vol. 15, no. 12, pp. 1273–1278, Dec. 2019, doi: 10.1038/s41567-019-0648-8.
  • S. Lloyd and C. Weedbrook, “Quantum Generative Adversarial Learning,” Phys. Rev. Lett., vol. 121, no. 4, p. 040502, Jul. 2018, doi: 10.1103/PhysRevLett.121.040502.
  • D. Marković and J. Grollier, “Quantum neuromorphic computing,” Appl. Phys. Lett., vol. 117, no. 15, p. 150501, Oct. 2020, doi: 10.1063/5.0020014.
  • L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki, “Quantum reservoir computing with a single nonlinear oscillator,” Phys. Rev. Res., vol. 3, no. 1, p. 013077, Jan. 2021, doi: 10.1103/PhysRevResearch.3.013077.
  • 斎藤三郎, 再生核の理論入門. 牧野書店, 2002.
  • R. Courant, Methods of Mathematical Physics Volume 1, Volume 1版. Weinheim: Wiley-VCH, 1989.
  • M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.
  • V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, Art. no. 7747, Mar. 2019, doi: 10.1038/s41586-019-0980-2.
  • D. K. Park, C. Blank, and F. Petruccione, “The theory of the quantum kernel-based binary classifier,” Phys. Lett. A, vol. 384, no. 21, p. 126422, Jul. 2020, doi: 10.1016/j.physleta.2020.126422.
  • V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic circuits,” in Proceedings of the 2005 Asia and South Pacific Design Automation Conference, in ASP-DAC ’05. New York, NY, USA: Association for Computing Machinery, Jan. 2005, pp. 272–275. doi: 10.1145/1120725.1120847.
  • K. Nakaji et al., “Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators,” Phys. Rev. Res., vol. 4, no. 2, p. 023136, May 2022, doi: 10.1103/PhysRevResearch.4.023136.
  • M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, 2nd ed. 2021版. Cham: Springer, 2021.
  • 情報処理学会出版委員会 and 嶋田義皓, 量子コンピューティング: 基本アルゴリズムから量子機械学習まで. オーム社, 2020.
  • A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p. 150502, Oct. 2009, doi: 10.1103/PhysRevLett.103.150502.
  • “QiskitでHHLアルゴリズム (線形方程式を解く),” Qiita, Jan. 12, 2021. https://qiita.com/notori48/items/0f1397f258b8ae16ce29 (accessed Sep. 18, 2023).
  • A. M. Childs, “Equation solving by simulation,” Nat. Phys., vol. 5, no. 12, Art. no. 12, Dec. 2009, doi: 10.1038/nphys1473.
  • S. Aaronson, “Read the fine print,” Nat. Phys., vol. 11, no. 4, Art. no. 4, Apr. 2015, doi: 10.1038/nphys3272.
  • A. C. Vazquez, R. Hiptmair, and S. Woerner, “Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation,” ACM Trans. Quantum Comput., vol. 3, no. 1, p. 2:1-2:37, Jan. 2022, doi: 10.1145/3490631.
  • S. S. Kavitha and N. Kaulgud, “Quantum K-means clustering method for detecting heart disease using quantum circuit approach,” Soft Comput., vol. 27, no. 18, pp. 13255–13268, Sep. 2023, doi: 10.1007/s00500-022-07200-x.
  • C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
  • V. N. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer, 2000. doi: 10.1007/978-1-4757-3264-1.
  • F. Pedregosa et al., “Scikit-learn: Machine Learning in Python.” arXiv, Jun. 05, 2018. doi: 10.48550/arXiv.1201.0490.
  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309, Sep. 2018, doi: 10.1103/PhysRevA.98.032309.
  • M. Watabe, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Quantum Circuit Learning with Error Backpropagation Algorithm and Experimental Implementation,” Quantum Rep., vol. 3, no. 2, Art. no. 2, Jun. 2021, doi: 10.3390/quantum3020021.
  • “ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon.”
    https://www.amazon.co.jp/gp/product/4873117585/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i0 (accessed Sep. 19, 2023).
  • J. C. Spall, “A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates,” in 1987 American Control Conference, 1987, pp. 1161–1167. doi: 10.23919/ACC.1987.4789489.
  • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, Art. no. 6088, Oct. 1986, doi: 10.1038/323533a0.
  • J. Li, X. Yang, X. Peng, and C.-P. Sun, “Hybrid Quantum-Classical Approach to Quantum Optimal Control,” Phys. Rev. Lett., vol. 118, no. 15, p. 150503, Apr. 2017, doi: 10.1103/PhysRevLett.118.150503.
  • A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,” Nat Commun, vol. 5, no. 1, Art. no. 1, Jul. 2014, doi: 10.1038/ncomms5213.
  • “VQEを利用した分子シミュレーション.” https://learn.qiskit.org (accessed Sep. 13, 2023).
  • E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Algorithm.” arXiv, Nov. 14, 2014. doi: 10.48550/arXiv.1411.4028.
  • E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum Computation by Adiabatic Evolution.” arXiv, Jan. 28, 2000. doi: 10.48550/arXiv.quant-ph/0001106.
  • “量子近似最適化アルゴリズム — Qiskit 0.43.1 ドキュメント.”
    https://qiskit.org/documentation/locale/ja_JP/tutorials/algorithms/05_qaoa.html (accessed Sep. 13, 2023).
  • J. Barry, D. T. Barry, and S. Aaronson, “Quantum POMDPs,” Phys. Rev. A, vol. 90, no. 3, p. 032311, Sep. 2014, doi: 10.1103/PhysRevA.90.032311.
  • T. Kimura, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Quantum circuit architectures via quantum observable Markov decision process planning,” J. Phys. Commun., vol. 6, no. 7, p. 075006, Jul. 2022, doi: 10.1088/2399-6528/ac7d39.
  • T. Kimura, K. Shiba, C.-C. Chen, M. Sogabe, K. Sakamoto, and T. Sogabe, “Variational Quantum Circuit-Based Reinforcement Learning for POMDP and Experimental Implementation,” Mathematical Problems in Engineering, vol. 2021, p. e3511029, Dec. 2021, doi: 10.1155/2021/3511029.
  • 曽我部東馬, 強化学習アルゴリズム入門: 「平均」 からはじめる基礎と応用. オーム社, 2019.
  • R. Sutton and A. Barto, Reinforcement Learning, second edition: An Introduction, 第2版. Cambridge, Massachusetts: Bradford Books, 2018.
  • 牧野貴樹 et al., これからの強化学習. 森北出版, 2016.
  • G. A. Cidre, “Planning in a quantum system,” Master Thesis, Carnegie Mellon University Pittsburgh, PA, 2016.
  • . M. Greenberger, M. A. Horne, and A. Zeilinger, “Going Beyond Bell’s Theorem.” arXiv, Dec. 06, 2007. doi: 10.48550/arXiv.0712.0921.
  • K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309, Sep. 2018, doi: 10.1103/PhysRevA.98.032309.
  • J. Li, X. Yang, X. Peng, and C.-P. Sun, “Hybrid Quantum-Classical Approach to Quantum Optimal Control,” Phys. Rev. Lett., vol. 118, no. 15, p. 150503, Apr. 2017, doi: 10.1103/PhysRevLett.118.150503.
  • “ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 | 斎藤 康毅 |本 | 通販 | Amazon.”

  • https://www.amazon.co.jp/gp/product/4873117585/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i0 (accessed Sep. 19, 2023).
  • J. C. Spall, “A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates,” in 1987 American Control Conference, 1987, pp. 1161–1167. doi: 10.23919/ACC.1987.4789489.
  • 牧野貴樹 et al., これからの強化学習. 森北出版, 2016.
  • 森村哲郎, 強化学習. 講談社, 2019.
  • 曽我部東馬, 強化学習アルゴリズム入門: 「平均」 からはじめる基礎と応用. オーム社, 2019.
  • J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: an anytime algorithm for POMDPs,” in Proceedings of the 18th international joint conference on Artificial intelligence, in IJCAI’03. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Aug. 2003, pp. 1025–1030.

【口コミ】

  • ※口コミはありません。
ページトップへ戻る