書籍
書籍検索
近日発売 送料無料

エンジニア入門シリーズ

基本から学ぶ
マイクロ波ワイヤレス給電
回路設計から移動体・ドローンへの応用まで

著: 嶋村 耕平
松倉 真帆
菅沼 悟
溝尻 征
定価: 4,620円(本体4,200円+税)
判型: A5
ページ数: 232 ページ
ISBN: 978-4-910558-36-3
発売日: 2024/11/22
管理No: 134

発売前の予約注文を承っております

【目次】

1章 マイクロ波ワイヤレス給電~Historyと最新の研究~

  1. 1.1 はじめに
  2. 1.2 マイクロ波ワイヤレス給電のこれまでの歴史・研究
  3. 1.3 要素技術の発展の歴史
  4. 1.4 近年の研究開発動向
  5. 1.5 各周波数帯域に対する身の回りの電磁波利用

2章 マイクロ波ワイヤレス給電の基礎

  1. 2.1 空間中の電磁波の伝播
  2. 2.2 電磁波の伝播手段と伝播モード
    1. 2.2.1 導波管(WG: Wave Guide)
    2. 2.2.2 同軸ケーブル
    3. 2.2.3 高周波伝送路
  3. 2.3 伝送線路理論
  4. 2.4 λ/2, λ/4線路
  5. 2.5 Sパラメータ

3章 マイクロ波源の設計

  1. 3.1 マイクロ波電源の全体概要
  2. 3.2 増幅回路の電力利得
  3. 3.3 ドレイン効率と電力付加効率 (PAE)
  4. 3.4 小信号利得 (線形領域) と大信号利得 (非線形領域)、P1dBとP3dB
  5. 3.5 マイクロ波増幅回路における増幅素子の周波数特性と最大可能出力
  6. 3.6 マイクロ波増幅回路のトレンドとベンチマーク
  7. 3.7 マイクロ波電源のシステム要件と設計構想
  8. 3.8 異常発振とK値
  9. 3.9 最大有能電力利得
  10. 3.10 増幅回路の動作モード
  11. 3.11 ソースプルとロードプル
  12. 3.12 多段増幅回路の設計方法
  13. 3.13 DCバイアス線路
  14. 3.14 増幅回路全体でのインピーダンス整合回路の設計
  15. 3.15 具体的なマイクロ波電源の設計手順

4章 マイクロ波ワイヤレス給電の受電側回路設計~アンテナ~

  1. 4.1 電気ダイポールとダイポールアンテナ
  2. 4.2 アンテナの評価指標
    1. 4.2.1 放射パターンと利得 (Gain)
    2. 4.2.2 実効面積(Effective area)
    3. 4.2.3 偏波
  3. 4.3 アンテナの遠方界放射
  4. 4.4 開口面アンテナ
  5. 4.5 マイクロストリップアンテナ (MSA)
    1. 4.5.1 28 GHzパッチアンテナの設計手順例
  6. 4.6 アレイアンテナの設計
    1. 4.6.1 4.5.1節の単体アンテナの4素子アレイ化

5章 マイクロ波ワイヤレス給電の受電側設計~整流回路~

  1. 5.1 理論RF-DC変換効率
  2. 5.2 シングルシリーズ・シングルシャント整流回路
  3. 5.3 28 GHz動作のF級負荷整流回路の設計製作
  4. 5.4 整流回路の性能評価
  5. 5.5 アンテナとの統合

6章 飛翔体への給電実験

  1. 6.1 飛翔体へのワイヤレス給電の歴史
  2. 6.2 回転翼UAVへのワイヤレス給電における28 GHzの優位性 (2020年時点)
  3. 6.3 菅沼らによる飛行デモンストレーション実験と効率解析
    1. 6.3.1 送電系・追尾システム
  4. 6.4 受電レクテナ
    1. 6.4.1 アンテナ
    2. 6.4.2 整流回路
  5. 6.5 UAV制御系
  6. 6.6 送受電効率の解析式
    1. 6.6.1 ガウシアンビームとビーム収集効率ηbeam
    2. 6.6.2 捕集効率ηcap
    3. 6.6.3 透過効率ηtra
  7. 6.7 飛行デモンストレーション結果
  8. 6.8 慶長・茂呂らによる飛行デモンストレーション実験
    1. 6.8.1 受電アンテナ:16アレーパッチアンテナ
    2. 6.8.2 UAV制御:PI・PID制御の導入
    3. 6.8.3 飛行デモンストレーション実験結果
  9. 6.9 UAVへのワイヤレス給電の実現可能性
    1. 6.9.1 5.8 GHz・28 GHzの解析効率比較
    2. 6.9.2 バッテリー性能との比較 (2020年時点)

7章 未来のワイヤレス給電

  1. 7.1 超高周波ワイヤレス給電
  2. 7.2 大電力ワイヤレス給電
    1. 7.2.1 大電力ワイヤレス給電で用いる発振源
    2. 7.2.2 立体型の整流管

【参考文献】

  • N. Tesla, “The Transmission of Electric Energy without Wires”, Society of Wireless Pioneers - California Historical Radio Society, 1904.
  • W. C. Brown, "The History of Power Transmission by Radio Waves," in IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, Sept. 1984.
  • W. C. Brown, “Experimental Airborne Microwave Supported Platform”, 1965.
  • J. Schlesak, A. Alden, and T. Ohno, “A Microwave Powered High Altitude Platform”, Proceedings of the IEEE MTT-S International Microwave Symposium Digest, IEEE, New York, pp.283-286, 1988.
  • N. Kaya, H. Matsumoto, S. Miyatake, I. Kimura, and M. Nagatomo, “Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment,” Space Solar Power Review, Vol.6, pp.181-186, 1986.
  • Y. Fujino, T. Ito, M. Fujita, N. Kaya, H. Matsumoto, K. Kawabata, H. Sawada and. T. Onodera, “A rectenna for MILAX,” in Proc. Wireless Power Transmiss. Conf., 1993.
  • N. Kaya, S. Ida, Y. Fujino, and M. Fujita, “Transmitting antenna system for airship demonstration (ETHER),” Space Energy Transp., vol. 1, no. 4, pp. 237–245, 1996.
  • L. H. Hsieh, B. H. Strassner, S. J. Kokel, C. T. Rodenbeck, M. Y. Li, K. Chang, F. E. Little, G. D. Amdt, and P. H. Nga, "Development of a retrodirective wireless microwave power transmission system," in Proc. IEEE Int. Symp. Antennas Propag., pp. 393–396, Jun. 2003.
  • C. T. Rodenbeck, P. I. Jaffe, B. H. Strassner, P. E. Hausgen, J. O. McSpadden, H. Kazemi, N. Shinohara, B. B. Tierney, C. B. DePuma, and A. P. Self, “Microwave and Millimeter Wave Power Beaming,” in IEEE Journal of Microwaves, Vol. 1, No. 1, pp. 229-259, Jan. 2021.
  • J. Foust, “A step forward for space solar power,” The Space Review, Sep. 15, 2008.
  • T. Nishioka and S. Yano, “Mitsubishi heavy takes step toward long distance wireless power,” Nikkei Asian Rev., Mar. 16, 2015.
  • S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, and T. Saito, "Subterahertz Wireless Power Transmission Using 303-GHz Rectenna and 300-kW-Class Gyrotron," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 834-836, Sept. 2018.
  • 令和4年度重要技術管理体制強化事業 (宇宙分野における重要技術の実態調査及び情報収集) 調査報告書, 三菱総合研究所
  • K. Song J. Kim, J. W. Kim, Y. Park, J. J. Ely, H. J. Kim, and S. H. Choi, “Preliminary operational aspects of microwave powered airship drone,” Int. J. Micro Air Veh., Vol. 11, pp. 1–10, 2019.
  • H. Yagi and S. Uda, “On the feasibility of power transmission by electric waves,” Proc. Third pan-pacific congress held in Tokyo, Vol.2, pp.1306-1313, 1926.
  • W. C. Brown, “Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system,” NASA STI/Recon, Tech. Rep. 40, Aug. 1977.
  • A. Mugitani, N. Sakai, A. Hirono, K. Noguchi, and K. Itoh, “Harmonic Reaction Inductive Folded Dipole Antenna for Direct Connection With Rectifier Diodes,” IEEE Access, Vol. 10, 53433-53442, May 2022.
  • Y. H. Suh and K. Chang, “A high efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., Vol. 50(7), pp. 1784–1789, 2002.
  • X. Yang, J. Xu, D. Xu, and C. Xu, “X-band circularly polarized rectennas for microwave power transmission applications,” J. Electron. (China), Vol. 25, pp. 389-393, 2008.
  • K. Hatano, N. Shinohara, T. Seki, and M. Kawashima, “Development of MMIC Rectenna at 24GHz,” 2013 IEEE Radio and Wireless Symposium.
  • M. Suzuki, M. Matsukura, S. Mizojiri, K. Shimamura, S. Yokota, T. Kariya, and R. Minami, “Consideration of long distance WPT using 28 GHz gyrotron,” Space Sol. Power Syst., Vol. 3, pp. 45–48, 2018. (In Japanese)
  • S. Hemour, C. H. P. Lorenz, and K. Wu, “Small-footprint wideband 94 GHz rectifier for swarm micro-robotics,” 2015 IEEE MTT-S Int. Microw. Symp. IMS 2015, No. I, pp. 5–8, 2015.
  • A. Mavaddat, S. H. M. Armaki, and A. R. Erfanian, “Millimeter-Wave Energy Harvesting Using Microstrip Patch Antenna Array,” IEEE Antennas Wirel. Propag. Lett., Vol. 14, pp. 515–518, 2015.
  • M. Nariman, F. Shirinfar, S. Pamarti, A. Rofougaran, and F. D. Flaviis, “High efficiency Millimeter-Wave Energy-Harvesting Systems with Milliwatt-Level Output Power,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 64(6), pp. 605–609, 2017.
  • H. Kazemi, “61.5% Efficiency and 3.6 kW/m2 Power Handling Rectenna Circuit Demonstration for Radiative Millimeter Wave Wireless Power Transmission,” IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, pp. 650-658, Jan. 2022.
  • K. Matsui, K. Fujiwara, Y. Okamoto, Y. Mita, H. Yamaoka, H. Koizumi, and K. Komurasaki, "Development of 94 GHz microstrip line rectenna," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, pp. 1-4, 2019.
  • 総務省令和元年版情報通信白書第3節 「電波政策の展開」
  • 砂川重信, 「理論電磁気学」 ,紀伊国屋書店,初版1965.
  • D. M. Pozar, “Microwave Engineering,” John Wiley & Sons Inc., 1990.
  • J. Coonrod, “Comparing Microstrip and CPW Performance,” Microwave Journal 55(7), pp. 74-82, July 2012.
  • S. Oliver, “Optimize a Power Scheme for these Transient Times”, Electronic Design, Sep 30, 2014.
  • MTT-S student PA design competition
    https://ims-ieee.org/sites/ims2019/files/content_images/SDC2_High%20Efficiency%20Power%20Amplifier%20Design.pdf
  • A. Grebennikov, J. Wong, and H. Deguchi, “High-Power High-Efficiency GaN HEMT Doherty Amplifiers for Base Station Applications”, IEICE Trans. Electron., Vol.E104–C, No.10, October 2021.
  • A. Suzuki and S. Hara, “2.4GHz high efficiency GaN power amplifier using matching circuit less design”, 4th Australian Microwave Symposium, Sydney, Australia, 13–14 February 2020.
  • K. Chen and D. Peroulis, “A 3.1-GHz Class-F Power Amplifier With 82% Power-Added-Efficiency”, IEEE Microwave and Wireless Components Letters, Vol. 23, No. 8, August 2013.
  • T. Yamasaki, Y. Kittaka, H. Minamide, K. Yamauchi, S. Miwa, S. Goto, M. Nakayama, M. Kohno, and N. Yoshida, “A 68% Efficiency, C-Band lOOW GaN Power Amplifier for Space Applications”, 2010 IEEE MTT-S International Microwave Symposium.
  • H. Shigematsu, Y. Inoue, A. Akasegawa, M. Yamada, S. Masuda, Y. Kamada, A. Yamada, M. Kanamura, T. Ohki, K. Makiyama, N. Okamoto, K. Imanishi, T. Kikkawa, K. Joshin, and N. Hara, “C-band 340-W and X-band 100-W GaN Power Amplifiers with Over 50-% PAE”, 2009 IEEE MTT-S International Microwave Symposium Digest, 2009.
  • B. Liu, M. Mao, D. Khanna, P. Choi, C. C. Boon, and E. A. Fitzgerald, “A Highly Efficient Fully Integrated GaN Power Amplifier for 5-GHz WLAN 802.11ac Application,” IEEE Microwave and Wireless Components Letters, Vol. 28(5), May 2018.
  • M. Kamiyama, R. Ishikawa, and K. Honjo, “5.65 GHz High-Efficiency GaN HEMT Power Amplifier With Harmonics Treatment up to Fourth Order,” IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, June 2012.
  • Y. Park, D. Minn, S. Kim, J. Moon, and B. Kim, “A Highly Efficient Power Amplifier at 5.8 GHz Using Independent Harmonic Control,” IEEE Microwave and Wireless Components Letters, Vol. 27(1), January 2017.
  • Y. S. Noh and I. B. Yom, “Highly Integrated C-Band GaN High Power Amplifier MMIC for Phased Array Applications,” IEEE Microwave and Wireless Components Letters, Vol. 25, No. 6, June 2015.
  • NICT “極限環境で利用可能な無線通信向け酸化ガリウムトランジスタを開発” https://www.nict.go.jp/press/2020/12/16-1.html
  • T. Oishi, N. Kawano, S. Masuya, and M. Kasu, “Diamond Schottky Barrier Diodes With NO2 Exposed Surface and RF-DC Conversion Toward High Power Rectenna,” IEEE Electron Device Lett. 38 pp.87-90, 2017.
  • HMC391LP4
    https://www.analog.com/media/en/technical-documentation/data-sheets/hmc391.pdf
  • HMC326MS8G
    https://www.analog.com/media/en/technical-documentation/data-sheets/hmc326.pdf
  • CGH40010F
    https://cdn.macom.com/datasheets/CGH40010.pdf
  • FI3642-10R
    https://www.orient-microwave.co.jp/pdf/omw_all_catalog_2020.pdf
  • S. C. Cripps, “Advanced Techniques in RF Power Amplifier Design,” Artech House Publishers, First Edition, 2002.
  • Md. Golam Sadeque, Z. Yusoff, S. J. Hashim, A. S. M. Marzuki, J. Lees, and D. FitzPatrick, “Design of Wideband Continuous Class-F Power Amplifier Using Low Pass Matching Technique and Harmonic Tuning Network,” IEEE Access, Vol. 10(29), August 2022.
  • Ceylan, H. B. Yagci, and S. Paker, ‘‘Tunable class-F high power amplifier at X-band using GaN HEMT,’’ Turkish J. Electr. Eng. Comput. Sci., Vol. 26, no. 5, pp. 2327–2334, Sep. 2018.
  • V. Carrubba, A. L. Clarke, M. Akmal, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, ‘‘The continuous class-F mode power amplifier,’’ in Proc. 5th Eur. Microw. Integr. Circuits Conf., Paris, France, pp. 432–435, 2010.
  • BC453S, DX ANTENNA, https://dxantenna-product.dga.jp/detail.html?id=7&category=25&page=1 (R5.4.26 アクセス)
  • MA5612 series、Anritsu, https://www.anritsu.com/ja-jp/test-measurement/products/ma5612-series (R5.4.26 アクセス)
  • AMT, https://www.ad-mtech.com/product/antenna/antenna-chil/products-1669/ (R5.4.26アクセス)
  • PEWAN1012, Paternack, https://www.pasternack.jp/images/ProductPDF/PEWAN1012.pdf (R5.4.26アクセス)
  • S. Mizojiri and K. Shimamura, “Recent progress of Wireless Power Transfer via Sub-THz wave,” APMC2019.
  • H. T. Friis, “A note on a simple transmission formula,” Proc. IRE and Waves and Electronics, pp. 254-256, May, 1946.
  • ITU SG1 Delayed contribustion Document 1A/18-E, “Update of information in response to question Itu-R 210/1 on wireless power transmission,” Oct. 2000.
  • 電子情報通信学会『知識の森』
  • 山本学, 「プリントアンテナの基礎と設計」 ,第44回アンテナ伝播における設計・解析手法ワークショップ,電子情報通信学会,Oct. 2012.
  • C. A. Balanis, “Antenna Theory : Analysis and Design : 2nd Edition, “ Wiley, 1997.
  • K. Keum and J. Choi, “A 28GHz 4 × 4 U-Slot Patch Array Antenna for mm-wave Communication”, 2018 International Symposium on Antennas and Propagation (ISAP), pp.729-730, 2018.
  • J. Saily, A. Lamminen, and J. Francey, “Low cost high gain antenna arrays for 60GHz millimetre wave identification (MMID)”, Millimetre Wave Days 2011, Espoo, 2011.
  • A. K. Sahu and M. R. Das, “4×4 rectangular patch array antenna for bore sight application of conical scan S-band tracking radar”, 2011 India Antenna Week, Kolkata, 2011.
  • M. K. A. Rahim, A. Asrokin, M. H. Jamaluddin, M. R. Ahmad, T. Masri, and M. Z. A. Abdul Aziz, “Microstrip Patch Antenna Array at 5.8GHz for Point to Point Communication”, 2006 International RF and Microwave Conference, PutraJaya, 2006.
  • D. N. Arizaca-Cusicuna, J. L. Arizaca-Cusicuna, and M. Clemente-Arenas, “High Gain 4×4 Rectangular Patch Antenna Array at 28GHz for Future 5G Applications”, 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing, Lima, 2018.
  • Y. I. Chong and D. Wenbin, “Microstrip series fed antenna array for millimeter wave automotive radar applications”, 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, Nanjing, 2012.
  • H. Iizuka, T. Watanabe, K. Sato, and K. Nishikawa. “Millimeter-Wave Microstrip Array Antenna for Automotive Radars”, IEICE Transactions on Communications, Vol.E86-B No.9, 2000.
  • A. Rida, M. Tentzeris, and S. Nikolaou, “Design of low cost microstrip antenna arrays for mm-Wave applications”, 2011 IEEE International Symposium on Antennas and Propagation, Spokane, 2011.
  • T. Ohira, "Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations," Ohira, Takashi. “Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations.” IEICE Electronic Express 10 (2013): 20130230.
  • W. C. Brown, “The history of the development of the rectenna, ” Proc. Of SPS microwave systems workshop, pp.271-280, 1980.
  • R. J. Gutmann and J. M. Borrego, “Power Combining in an Array Microwave Power Rectifier”, IEEE Trans. MTT, Vol. 27, No. 12 pp. 958-968, 1979.
  • K. Hatano, N. Shinohara, T. Mitani, K. Nishikawa, T. Seki, and K. Hiraga, "Development of Class-F Load Rectennas", Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 2011 IEEE MTT-S International, pp. 251-254, May 2011.
  • T. W. Yoo and K. Chang, “Theoretical and Experimental Development of 10 and 35GHz Rectennas,” IEEE Trans. Microw. Theory Tech., Vol. 40, No. 6, pp. 1259–1266,1992.
  • K. Hatano, “Development of 24GHz-Band MMIC Rectenna,” Vol.50, pp.4-7, 2013.
  • W. C. Brown, “Experiments Involving a Microwave Beam to Power and Position a Helicopter,” IEEE Transactions on Aerospace Elecronic System, Vol. AES-5, No.5, pp.692-702,1969.
  • N. Shinohara, “Beam Control Technologies with a High-Efficiency Phased Array for Microwave Power Transmission in Japan,” Proceedings of IEEE, Vol.101, No.6, pp.1448-1463, 2013.
  • J. Schlesak, A. Alden, and T. Ohno, “A Microwave Powered High Altitude Platform,” Proceedings of the IEEE MTT-S International Microwave Symposium Digest, IEEE, New York, pp.283-286, 1988.
  • Y. Fujino and M. Fujita, “Development of a High-efficiency Rectenna for Wireless Power Transmission -Application to a Microwave-Powered Airship Experiment,” Review of the Communications Research Laboratory, Vol.43, No.3, pp.367-374, 1998.
  • K. Shimamura, H. Sawahara, A. Oda, S. Minakawa, S. Mizojiri, S. Suganuma, K. Mori, and K. Komurasaki, “Feasibility Study of Microwave Wireless Powered Flight for Micro Air Vehicles,” Wireless Power Transfer, Vol.4, No.2, pp.146-159, 2017.
  • C. T. Rodenbeck, P. I. Jaffe, B. H. Strassner II, P. E. Hausgen, J. O. McSpadden, “Microwave and Millimeter Wave Power Beaming,” IEEE Journal of Microwaves, Vol.1, No.1, 2021.
  • D. H. Nguyen, S. Suganuma, K. Shimamura, and K. Mori, “Millimeter Wave Power Transfer to an Autonomously Controlled Micro Aerial Vehicle,” Transactions of the JSASS, Vol.63, No.3, pp.101-108, 2020.
  • S. Suganuma, K. Shimamura, M. Matsukura, N. D. Hung, Duc, and K. Mori, “28 GHz Microwave-Powered Propulsion Efficiency for Free-Flight Demonstration”, Journal of Spacecraft and Rockets, Vol.59, No.1, pp.342-347, 2022.
  • 嶋村 耕平, 茂呂 涼真, 慶長 尚輝, “離れてもOKなワイヤレス給電を目指して”, トランジスタ技術, 2022年6月号, pp.129-137, 2022.
  • W. C. Brown, Chapter 2.2.4, Electronic and Mechanical Improvement of the Receiving Terminal of a Free-space Microwave Power Transmission System, NASA Sti/recon Technical Report, 40, 1977
  • M. Nakamura, Y. Yamaguthi, M. Tsuru, Y. Aihara, A. Yamamoto, Y. Homma, and E. Taniguchi, "A 5.8 GHz-band high efficiency rectifier with a low resistance and high breakdown voltage GaAs Schottky Barrier Diode," IEICE Technical Report WPT2015-5, MW2015-5(2015-04) (in Japanese)
  • F. Tan and C. Liu, "Theoretical and experimental development of a high-conversion-efficiency rectifier at X-band," International Journal of Microwave and Wireless Technologies, Vol. 9(5), pp. 985-994, 2017.
  • K. Hatano, N. Shinohara, T. Mitani, T. Seki, and M. Kawashima, “Development of 24GHz-Band MMIC Rectenna,” Radio and Wireless Symposium (RWS). IEEE 2013, Vol. 50, pp. 199–201, 2013.
  • T. W. Yoo and K. Chang, “Theoretical and Experimental Development of 10 and 35 GHz Rectennas,” IEEE Trans. Microw. Theory Tech., Vol. 40, no. 6, pp. 1259–1266, 1992.
  • M. Nariman, F. Shirinfar, S. Pamarti, A. Rofougaran, and F. D. Flaviis, "High-Efficiency Millimeter-Wave Energy-Harvesting Systems With Milliwatt-Level Output Power," IEEE Trans. on circuits and systems-Ⅱ:express briefs, Vol.64, No.6, 2017.
  • H. K. Chiou, I. S. Chen, "High-Efficiency Dual-Band On-Chip Rectenna for 35- and 94-GHz Wireless Power Transmission in 0.13-μm CMOS Technology," IEEE Trans. Microw. Theory Tech, Vol.58, No.12, 2010.
  • S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, and T. Saito, "Subterahertz Wireless Power Transmission Using 303-GHz Rectenna and 300-kW-Class Gyrotron," in IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, pp. 834-836, Sept. 2018.
  • N. Shinohara and H. Matsumoto. “A Study of Dependance of DC Output of Rectenna Array on the Method of Inter-connection of Its Array Element,” Trans IEE Jpn 1997;117-B:12541261. (日本語)
  • 篠原真毅, “宇宙太陽発電”, ISBN978-4-274-21233-8, オーム社, 2012.7
  • L. W. Traub, “Range and Endurance Estimates for Battery-Powered Aircraft,” Journal of Aircraft, pp. 703-707, 2011.
  • M. Saska, T. Krajník, J. Faigl, V. Vonásek, and L. Přeučil, "Low cost MAV platform AR-drone in experimental verifications of methods for vision based autonomous navigation," 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 4808-4809, 2012.
  • T. Miura, N. Shinohara, and H. Matsumoto, “Experimental Study of Rectenna Connection for Microwave Power Transmission,” Electronics and Communications in Japan (Part II: Electronics), Vol. 84, No. 2, pp. 27–36, 2001.
  • N. Shinohara, Wireless Power Transfer via Radiowaves, ISTE Ltd. and John Wiley & Sons, Inc., London and New York, Chap. 2, pp. 42–47. 2014.
  • S. Aich, C. Ahuja, T. Gupta, and P. Arulmozhivarman, “Analysis of Ground Effect on Multi-Rotors,” 2014 International Conference on Electronics, Communication and Computational Engineering (ICECCE), Hosur, pp. 236–241, 2014.
  • 北森: 制御対象の部分的知識に基づく制御系の設計法;計測自動制御学会論文集,Vol. 15, No. 4, pp. 549–555, 1979.
    https://www.dji.com/jp/flycart-30, “DJI FlyCart 30 - 物流に.新たな未来を - DJI”, DJI (2024年4月6日アクセス)
  • S. Mizojiri, K. Takagi, K. Shimamura, S. Yokota, M. Fukunari, Y. Tatematsu, and T. Saito, “Demonstration of sub-terahertz coplanar rectenna using 265 GHz gyrotron,” 2019 IEEE MTT-S Wireless Power Transfer Conference (WPTC), London, 2019.
  • N. Shinohara, “Beam Efficiency of Wireless Power Transmission via Radio Waves from short range to long range,” Journal of the Korean institute of electromagnetic engineering and science, Vol. 10, No. 4, pp. 4–10, 2010.
  • R. J. Trew, “SiC and GaN transistors—Is there one winner for microwave power applications?” Proc. IEEE, Vol. 90, No. 6, pp. 1032–1047, Jun. 2002.
  • M. Thumm, “State-of-the-Art of High Power Gyro-Device and Free Electron Masers” KIT Scientific Reports 7735; KIT Scientific Publishing: Karlsruhe, Germany, 2017, p. 7735.
  • M. Suzuki, M. Matsukura, S. Mizojiri, K. Shimamura, S. Yokota, T. Kariya, R. Minami, “Consideration of long distance WPT using 28 GHz gyrotron,” Space Sol. Power Syst., pp. 45–48, 2018. (In Japanese)
  • K. Matsui, K. Fujiwara, Y. Okamoto, Y. Mita, H. Yamaoka, H. Koizumi, and K. Komurasaki, "Development of 94 GHz microstrip line rectenna," 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, pp. 1-4, 2019.
  • S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, and T. Saito, “Subterahertz Wireless Power Transmission Using 303-GHz Rectenna and 300-kW-Class Gyrotron,” IEEE Microw. Wirel. Components Lett. Vol. 28, pp. 834–836, 2018.
  • W. C. Brown, “Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system,” NASA STI/Recon, Tech. Rep. 40, Aug. 1977.
  • A. Mugitani, N. Sakai; A. Hirono, K. Noguchi, and K. Itoh, “Harmonic Reaction Inductive Folded Dipole Antenna for Direct Connection With Rectifier Diodes,” IEEE Access, Vol.10, 53433 – 53442, 13 May 2022.
  • Y. H. Suh and K. Chang, “A high efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Tech., Vol. 50, pp. 1784–1789, 2002.
  • X. Yang, J. Xu, D. Xu, and C. Xu, “X-band circularly polarized rectennas for microwave power transmission applications,” J. Electron. (China), Vol. 25, 389, 2008.
  • K. Hatano, N. Shinohara, T. Seki, and M. Kawashima, “Development of MMIC Rectenna at 24GHz,” 2013 IEEE Radio and Wireless Symposium, 2013.
  • A. Mavaddat, S. H. M. Armaki, and A. R. Erfanian, “Millimeter-Wave Energy Harvesting Using Microstrip Patch Antenna Array,” IEEE Antennas Wirel. Propag. Lett., Vol. 14, pp. 515–518, 2015.
  • M. Nariman, F. Shirinfar, S. Pamarti, A. Rofougaran, and F. D. Flaviis, “High efficiency Millimeter-Wave Energy-Harvesting Systems with Milliwatt-Level Output Power,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 64, pp. 605–609, 2017.
  • J. Ye, C. Yang, and Y. Zhang, “Design and experiment of a rectenna array base on GaAs transistor for microwave power transmission,” In Proceedings of the 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, China, pp. 5–8 June 2016.
  • M. Nakamura, Y. Yamaguchi, M. Tsuru, Y. Aihara, A. Yamamoto, Y. Homma, and E. Taniguchi, “Prototype of 5.8 GHz-band high efficiency rectifier with a high breakdown voltage GaAs SBD,” In Proceeding id the Institute of Electronics, Information and Communication engineers, Tokyo, Japan, Vol. 115, pp. 21–25, 2015.
  • T. W. Yoo and K. Chang, “Theoretical and Experimental Development of 10 and 35 GHz Rectennas,” IEEE Trans. Microw. Theory Tech., Vol.40, pp. 1259–1266, 1992.
  • S. Hemour, C. H. P. Lorenz, and K. Wu, “Small-footprint wideband 94 GHz rectifier for swarm micro-robotics,” In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium (IMS), USA, Vol. I, pp. 5–8, 2015.
  • H.-K. Chiou and I.-S. Chen, “High efficiency Dual-Band On-Chip Rectenna for 35- and 94-GHz Wireless Power Transmission in 0.13-μm CMOS Technology,” IEEE Trans. Microw. Theory Tech., Vol. 58, pp. 3598–3606, 2010.
  • N. Weissman, S. Jameson, and E. Socher, “W-Band CMOS On-Chip Energy Harvester and Rectenna,” In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 2014.
  • A. Etinger, M. Pilossof, B. Litvak, D. Hardon, M. Einat, B. Kapilevich, and Y. Pinhasi, “Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming Using High Power Radiation Sources,” Acta Phys. Pol. A 2017 131, pp. 1280–1284, 2017.
  • P. He et al., "A W-Band 2 × 2 Rectenna Array With On-Chip CMOS Switching Rectifier and On-PCB Tapered Slot Antenna for Wireless Power Transfer," in IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, pp. 969-979, 2021,
  • H. Kazemi, “61.5% Efficiency and 3.6 kW/m2 Power Handling Rectenna Circuit Demonstration for Radiative Millimeter Wave Wireless Power Transmission,” IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, pp. 650-658, Jan. 2022.
  • K. Fujiwara and T. Kobayashi, “Low-cost W-band frequency converter with broad-band waveguide-to-microstrip transducer,” in Proc. Global Symp. Millim. Waves (GSMM), ESA Workshop Millim.-Wave Technol. Appl., Espoo, Finland, pp. 1–4, 2016.
  • Y. Yamaguchi et al., “High power 303 GHz gyrotron for CTS in LHD,” J. Instrum., Vol. 10, p. C10002, Oct. 2015.
  • T. Saito et al., “Development of 300 GHz band gyrotron for collective thomson scattering diagnostics in the large helical device,” Plasma Fusion Res., Vol. 12, p. 1206013, Mar. 2017.
  • 高橋健介, “GaN ショットキーダイオードを用いたマイクロ波電力整流回路の研究”, 徳島大学修士論文, 2010.
  • S. Mizojiri, K. Takagi, K. Shimamura, S. Yokota, M. Fukunari, Y. Tatematsu, and T. Saito,” GaN schottky barrier diode for Sub-terahertz rectenna,” Wireless Power Transfer Conference (WPTC), London, Jun.2019.
  • T. Oishi, N. Kawano, S. Masuya, and M. Kasu, “Diamond Schottky Barrier Diodes With NO2 Exposed Surface and RF-DC Conversion Toward High Power Rectenna,” IEEE Electron Device Lett. 38 pp.87-90, 2017.
  • K.S. Champlin and G. Eisenstein, “Cutoff Frequency of Submillimeter Schottky-Barrier Diodes.” IEEE Transactions on Microwave Theory and Techniques, 26, 1, 1978.
  • Garret Moddel and Sachit Grover. Rectenna Solar Cells; Springer Science: New York, 2013.
  • A. Sharma, V. Singh, T. L. Bougher, and B. A. Cola, “A carbon nanotube optical rectenna”, Nature Nanotechnology, Vol. 10, 2015.
  • M. Alhazmi, F. Aydinoglu, B. Cui, O. M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, “NSTOA-13-RA-108 Comparison of the Effects of Varying of Metal Electrode in Metal-Insulator-Metal Diodes with multi-dielectric layers”, Austin J Nanomed Nanotechnol, Vol. 2(2), 2014.
  • P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A. Y. Elezzabi, “Observation of resonant tunneling phenomenon in metal-insulator-insulator-insulator-metal electron tunnel devices,” Applied Physics Letters, 100, 113503, 2012.
  • N. Alimardania and J. F. Conley, Jr, “Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling,” Applied Physics Letters, 105, 082902 (2014).
  • N. Alimardania and J. F. Conley, Jr, “Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling,” Applied Physics Letters,105, 082902 (2014).
  • K. Choi, F. Yesilkoy, G. Ryu, S. H. Cho, N. Goldsman, M. Dagenais, and M. Peckerar, “A Focused Asymmetric Metal–Insulator–Metal Tunneling Diode: Fabrication, DC Characteristics and RF Rectification Analysis”, IEEE Transactions on Electron Devices, Vol. 58, No. 10, 2011.
  • G. Moddel and S. Grover, “Rectenna Solar Cells; Springer Science,” New York, 2013.
  • H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” New York: McGraw- Hill, 1948.
  • M. Aldrigo, M. Dragoman, M. Modreanu, I. Povey, S. Iordanescu, D. Vasilache, A. Dinescu, M. Shanawani, and D. Masotti, IEEE Transactions on Electron Devices 65, 2973–2980 (2018).
  • G. Jayaswal, A. Belkadi, A. Meredov, B. Pelz, G. Moddel, A. Shamim “Optical rectification through an Al2O3 based MIM passive rectenna at 28.3 THz,” Vol. 7, pp. 1-9, 2018.
  • B. Pelz and G. Moddel, “Demonstration of distributed capacitance compensation in a metal-insulator-metal infrared rectenna incorporating a traveling-wave diode” J. Appl. Phys. 125, 234502, 2019.
  • A. A. Khan, G. Jayaswal, F. A. Gahaffar, and A. Shamim, Microelectronic Engineering 181, pp. 34–42, 2017.
  • I. Z. Mitrovic, S. Almalki, S. B. Tekin, N. Sedghi, P. R. Chalker, and S. Hall, “Oxides for Rectenna Technology,” Materials 2021, 14, 5218.
  • D. Matsuura, M. Shimizu, Z. Liu, and H. Yugami, Applied Physics Express 15, 062001, 2022.
  • C. K. Chong and W. L. Menninger, "Latest Advancements in High-Power Millimeter-Wave Helix TWTs," IEEE Transactions on Plasma Science, Vol. 38 (6), pp. 1227-1238, 2010.
  • S. V. Samsonov, Igor G. Gachev, G. G. Denisov, A. A. Bogdashov, S. V. Mishakin, A. S. Fiks, E. A. Soluyanova, E. M. Tai, Y. V. Dominyuk, Boris A. Levitan, and Vladislav N. Murzin, "Ka-Band Gyrotron Traveling-Wave Tubes With the Highest Continuous-Wave and Average Power," in IEEE Transactions on Electron Devices, Vol. 61(12), pp. 4264-4267, 2014.
  • H. Gong, Y. Gong, T. Tang, J. Xu, and W. -X. Wang. "Experimental Investigation of a High-Power Ka-Band Folded Waveguide Traveling-Wave Tube," in IEEE Transactions on Electron Devices, Vol. 58, No. 7, pp. 2159-2163, 2011.
  • M. Field, T. Kimura, and J. Atkinson, “Development of a 100-W 200-GHz high bandwidth mm-wave amplifier,” IEEE Trans Electron Devices, 65(6):2122–2128, 2018.
  • S. Bhattacharjee, J. H. Booske, C. L. Kory, D. W. van der Weide, S. Limbach, S. Gallagher, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. C. Mancini, "Folded waveguide traveling-wave tube sources for terahertz radiation," in IEEE Transactions on Plasma Science, Vol. 32, No. 3, pp. 1002-1014, 2004.
  • S. V. Samsonov, G. G. Denisov, I. G. Gachev, and A. A. Bogdashov, “CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube,” IEEE Electron Device Letters, Vol. 41, No. 5, 2020.
  • G. Liu et al., "High Average Power Test of a W-Band Broadband Gyrotron Traveling Wave Tube," in IEEE Electron Device Letters, Vol. 43, No. 6, pp. 950-953, 2022.
  • N. Kumar, U. Singh, A. Bera, and A. K. Sinha, “A review on the sub-THz/THz gyrotrons,” Infrared Physics & Technology, Vol. 76, pp. 38-51, 2016.
  • C. Liu, H. Huang, Z. Liu, F. Huo, and K. Huang, “Experimental Study on Microwave Power Combining Based on Injection-Locked 15-kW S-Band Continuous-Wave Magnetrons,” IEEE Trans. Plasma Sci., Vol.44(8), 2016.
  • X. Chen, B. Yang, N. Shinohara, and C. Liu, “A High-Efficiency Microwave Power Combining System Based on Frequency-Tuning Injection-Locked Magnetrons,” IEEE Trans. Electron Devices, Vol.67(10), 2020.
  • D. C. Watson, R. W. Grow, and C. C. Johnson, “A cyclotron-wave rectifier for S-band and X-band,” IEEE Trans Electron ED-18(1):3, 1971.
  • V. A. Vanke, V. L. Savvin, I. A. Boudzinski, and S. V. Bykovski, “Development of cyclotron wave converter,” Abstracts of the Second International Wireless Power Transmission Conference WPT’95, October, Japan, 1995.
  • X. Zhao, X. Tuo, Q. Ge, Y. Peng, “Research on the high power cyclotron-wave rectifier,” Phys plasma 24(7):073117, 2017.
  • B. Hu, H. Li, T. Li, H. Wang, Y. Zhou, X. Zhao, X. Hu, X. Du, Y. Zhao, X. Li, and T. Qi, “A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier,” Energy Rep 7:1154, 2020.

【口コミ】

  • ※口コミはありません。
ページトップへ戻る