S. L. Chuang: Physics of Photonic Devices, A John Willey & Sons, Inc., Publication, ISBN 978-0-470-29319-5
A. Migdall, S. V. Polyakov, J. Fan, J. C. Bienfang: Single-Photon Generation and Detection Physics and Applications, Volume 45, Academic Press, Elsevier( 2013), ISBN 978-0-12-387695-9
T. Mizuno, H. Ikeda, K. Makino, et al.: Geiger-mode three-dimensional image sensor for eye-safe flash LIDAR, IEICE Electronics Express, Vol.17, No.11(, 2020) p. 20200152
T. Mizuno, H. Ikeda, H. Senshu, et al.: Optical pulse detection IC LIDARX integrated in MMX-LIDAR, IEICE TRANSACTIONS on Electronics, Vol.E108-C,No.5( 2025)
T. Nakura, S. Mandai, M. Ikeda, K. Asada: Time Difference Amplifier with Robust Gain Using Closed-Loop Control, IEICE Transactions on Electronics, 2010, Vol. E93.C, No. 3, p. 303-308( 2010)
T. Mizuno, M. Mita, Y. Kajikawa, et al.: Proc. SPIE 7106, Sensors, Systems, and Next-Generation Satellites XII, 71061A (9 October 2008); https://doi.org/10.1117/12.800791
M. I. Skolnik: Introduction to RADAR systems, Third Edition , McGraw-Hill Higher Education
R. Morris, C. Jones, M. Nagaraj: “Liquid crystal devices for beam steering applications”. Micromachines, 12( 3), 247M( 2021)
Z. He, F. Gou, R. Chen, et al.: Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments, Crystals 2019, 9, 292, doi:10.3390/cryst9060292
A. M.Shaltout, V. M. Shalaev, M. L. Brongersma: Spatiotemporal light control with active metasurfaces, Science 364, 648( 2019)
H. Uetsuka, T. Tokoro: Solid-State LiDAR for Autonomous Driving with no Moving Parts, 2024 31st International Workshop on Active-Matrix Flatpanel Displays and Devices( AM-FPD), Kyoto, Japan, 2024, pp.24-27
Y. Higa, G. Song, H. Watanabe, et al.: 3D integrated 45 W peak power2D addressable VCSEL array and laser driver for true solid-state LiDAR. SPIE OPTO, 2023.3
G. Song, Y. Higa, H. Watanabe, et al.: 3D integrated 2D addressable VCSEL array with highly uniform short pulse characteristics. SPIE OPTO, 2024.3
C. V. Poulton, M. J. Byrd, B. Moss, et al.: 8192-Element Optical Phased Array with 100° Steering Range and Flip-Chip CMOS, 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, 2020, pp.1-2 OSA Technical Digest
R. C. Johnson: “ANTENNA ENGINEERING HANDBOOK Third Ed.”McGRAW‐HILL BOOK
G. Ishigami, T. Mizuno: Towards Space-hardened, Small-lightweight Laser Range Imager for Planetary Exploration Rover, 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2014), Montreal, Canada
吉田孝: 改訂 レーダ技術, 電子情報通信学会
K. Yoshioka: A tutorial and review of automobile direct ToF LiDAR SoCs: evolution of next-generation LiDARs, IEICE Trans. on ELectronics, Vol. 105, No. 10, pp. 534-543, 2002
B. Montemerlo, M. Junior: The stanford entry in the urban challenge, Journal of Field Robotics, VOl. 25, No. 9, pp. 569-597, 2008
D. S. Hall: High definition lidar system. 特許番号: US7969558, 2007
P. Abbeel: Apprenticeship learning for motion planning with application to parking lot navigation, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1083-1090, 2008
C. Niclass: A 0.18um CMOS SoC for a 100-m-Range 10-Frame/s200x96-Pixel Time-of-Flight Depth Sensor, IEEE Journal of solid-state circuits, Vol. 49, No.1, pp. 315-330, 2013
熊谷央一,他:189 × 600SPAD 画素を用いた車載LiDAR 向け積層型直接Time-of-Flight 方式測距センサ,映像情報メディア学会情報センシング研究会,vol 45, no 11, 2021.3
M. A. Albota, B. F. Aull, D. G. Fouche, et al.: Three-Dimensional Imaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays, LINCOLN LABORATORY JOURNAL, VOLUME 13, NUMBER 2, 2002
I . Poberezhskiy, A. Johnson, D. Chang, et a l . : Flash lidar performance testing: configuration and results, SPIE 8379, Laser Radar Technology and Applications XVII, 837905,14 May 2012; doi: 10.1117/12.920326
M. A. Itzler, M. Entwistle, X. Jiang, et al.: Geiger-mode APD Single-Photon Cameras for 3D Laser Radar Imaging, 2014 IEEE Aerospace Conference,1-8 March 2014,DOI: 10.1109/AERO.2014.6836476
T. Baba, Y. Suzuki, K. Makino, et al.: Development of an InGaAs SPAD 2D Array for Flash LIDAR, Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400L (26 January 2018); doi:10.1117/12.2289270
S. Shimizu, Y. Katayama, T. Yamamoto, et al.: Flash LiDAR Development for Space Rendezvous, Trans. JSASS Aerospace Tech. Japan, Vol. 19, No. 3, pp. 304-309( 2021), DOI:10.2322/tastj.19.304
T. Mizuno, H. Ikeda, S. Iwashina, et al.: 1K Pixel Silicon-MPPC Three-Dimensional Image Sensor for Flash LIDAR, IEICE Electronics Express, 19 20210518( 2022)
T. Mizuno, H. Ikeda, T. Nagano, et al.: Si-MPPC Three-dimensional Image Sensor for Flash LIDAR, The 30th International Display Workshops, Niigata, PRJ5-2( 2023)
International Laser Ranging Service, https://ilrs.gsfc.nasa.gov/
W. L. Sjogren, W. R. Wollenhaupt: Lunar Shape via the Apollo Laser Altimeter, SCIENCE, 19 Jan 1973, Vol 179, Issue 4070, pp. 275-278, DOI:10.1126/science.179.4070.275
L. Duncanson, J. R. Kellner, J. Armston, et al.: Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission, Remote Sensing of Environment 270 (2022):112845
D. Sakaizawa, Y. Okawa, R. Mitsuhashi, et al.: Forest Canopy and Ground Elevation Measurement for Reducing Uncertainty of Forest Biomass, Improving Accuracy of Forest Floor Using Multi-Footprint Observation Lidar and Imager (Moli) Mission, IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium( 2022) 4280
R. Mitsuhashi, Y. Sawada, T. Imai, et al.: Multifootprint Observation Lidar and Imager( MOLI) Mission for Peatland Observations, Tropical Peatland Ecoevaluation, Springer( 2024) 271
D.E. Smith, M.T. Zuber, G.A.Neumann, and F.G.Lemoine: Topography of the Moon from the Clementine Lidar. Journal of Geophysical Research: Planets, 102, 1591-1611( 1997), https://doi.org/10.1029/96JE02940
T. D. Colea, A.F. Chenga, M. Zuberb, D. Smith: The laser rangefinder on the near earth asteroid rendezvous spacecraft, in Acta Astronautica. Second IAA International Conference on Low-Cost Planetary Missions, Laurel, vol. 39, Issue no 1–4, pp. 303–313, July–Aug( 1996)
D. E. Smith, M. T. Zuber, H. V. Frey, et al.: Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res. Planets, 106( E10), pp23689-23722( 2001)
J. F. Cavanaugh, J. C. Smith, X. Sun, et al.: The Mercury Laser Altimeter Instrument for the MESSENGER Mission, Space Science Reviews, v 131, n1-4, p 451-479( 2007)
H. Araki, S. Tazawa, H. Noda, et al.: Observation of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE, Advances in Space Research, v42, n 2, p 317-22(2008)
J. Ping, Q. Huang, J. Yan, et al.: Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter, China Ser. G-Phys. Mech. Astron. 52, 1105–1114( 2009)
J.A. Kamalakar, K.V.S. Bhaskar, A.S. Laxmi Prasad, et al.: Lunar ranging instrument for Chandrayaan-1, J Earth Syst Sci 114, 725–731( 2005)
D. E. Smith, M. T. Zuber, G. B. Jackson et al.: The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission, Space Sci Rev 150, 209–241( 2010)
T. Mizuno, K. Tsuno, E. Okumura, M. Nakayama: Evaluation of LIDAR System in Rendezvous and Touchdown Sequence of Hayabusa Mission, Transactions of the Japan Society for Aeronautical and Space Science, Vol. 53(179), pp. 47-53( 2010)
T. Mizuno, T. Kase, T. Shiina et al.: Development of the Laser Altimeter (LIDAR) for Hayabusa2, Space Sci Rev 208, pp. 33–47( 2017)
T. Hashimoto, T. Kubota and T. Mizuno et al.: Light weight sensors for the autonomous asteroid landing of MUSES-C mission, Acta Astronautica 53, pp. 381-388( 2003)
H. Senshu, T. Mizuno, K. Umetani, et al.: Light detection and ranging (LIDAR) laser altimeter for the Martian Moons Exploration( MMX) spacecraft, Earth Planets Space 73, 219( 2021)
C. S. Dickinson M. Daly, O. Barnouin, et al.: An Overview of the OSIRIS REx Laser Altimeter (OLA), 43rd Lunar and Planetary Science Conference pp. 1447( 2012)
J. M. Leonard, M.C. Moreau, P. G. Antreasian, et al.: Cross-Calibration of GNC and OLA LIDAR Systems Onboard OSIRIS-REx. In: Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference, 2022. Cham: Springer International Publishing, 2022. p.1585-1607
S. Shimizu, Y. Katayama, T. Yamamoto, et al.: Flash LiDAR Development for Space Rendezvous, Trans. JSASS Aerospace Tech. Japan, Vol. 19, No. 3, pp. 304-309( 2021), DOI:10.2322/tastj.19.304
W. Xu, Y. Hongxuan, H. Jiang, et al.: Navigation Doppler lidar sensor for precision landing of China’s Chang’E-5 lunar lander, Applied Optics Vol. 59, Issue 27, pp.8167-8174( 2020)
Indian Space Research Organization, Department of Space, Chandrayaan-3, https://www.isro.gov.in/Chandrayaan3_Details.html
F. Amzajerdian, G. D. Hines, D.F. Pierrottet, et al. : Navigation Doppler Lidar for autonomous ground, aerial, and space vehicles, In: 2018 Conference on Lasers and Electro-Optics( CLEO). IEEE, 2018. p. 1-2
水野貴秀,津野克彦,奥村英輔,中山通雄:小惑星探査機はやぶさ搭載用レーザ高度計:機器開発とその実運用結果報告,日本航空宇宙学会論文集,2006,54巻,634号,p. 514-521( 2006) [30]T. Mizuno, H. Ikeda, H. Senshu, et al.: Optical pulse detection IC LIDARX integrated in MMX-LIDAR, IEICE TRANSACTIONS on Electronics, Vol.E108-C,No.5( 2025)
T. Mizuno, H. Ikeda, S. Iwashina, et al.: 1K Pixel Silicon-MPPC Three-Dimensional Image Sensor for Flash LIDAR, IEICE Electronics Express, 19 20210518(2022)
齋藤宏文,水野貴秀:“れいめい”衛星の開発と小型高機能衛星の展望,日本航空宇宙学会誌, 2008, 56 巻, 651 号, p. 88-96
G. Ishigami, M. Otsuki, T. Kubota: Range-dependent Terrain Mapping and Multipath Planning using Cylindrical Coordinates for a Planetary Exploration Rover, J. Field Robotics, 30, pp. 536-551( 2013). https://doi.org/10.1002/rob.21462
Z. Liang, Y. Huang, and Y. Bai: Sampling Accelerates Graph Neural Network-Based 3D Object Detection in Autonomous Driving. Sensors, 24 (5): 1458( 2024): 1458. https://doi.org/10.3390/s24051458
W. Lyu, W. Ke, H. Sheng, et al.: Dynamic Downsampling Algorithm for 3D Point Cloud Map Based on Voxel Filtering. Applied Sciences, 14 (8): 3160(2024). https://doi.org/10.3390/app14083160
P. Gurram, S. Hu, and A. Chan: Uniform grid upsampling of 3D lidar point cloud data, Proc. SPIE 8650, Three-Dimensional Image Processing (3DIP) and Applications 2013, 86500B (2013); https://doi.org/10.1117/12.2004200
H. Huang, S. Wu, M. Gong, et al.: Edge-aware point set resampling. ACM Trans. Graph. 32, 1, Article 9( 2013); https://doi.org/10.1145/2421636.2421645
M. Dimitrievski, P. Veelaert, and W. Philips: Semantically aware multilateral filter for depth upsampling in automotive LiDAR point clouds, Proc. of the 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1058-1063(2017), https://doi.org/10.1109/IVS.2017.7995854
T. Shan, J. Wang, F. Chen, et al.: Simulation-based lidar super-resolution for ground vehicles, Robotics and Autonomous Systems, Volume 134,(2020) 103647; https://doi.org/10.1016/j.robot.2020.103647
B. Yang, P. Pfreundschuh, R. Siegwart, et al.: TULIP: Transformer for Upsampling of LiDAR Point Clouds, Proc. of the CVPR2024. https://doi.org/10.48550/arXiv.2312.06733
R. Li, X. Li, C. Fu, et al.: PU-GAN: a Point Cloud Upsampling Adversarial Network, Proc. of the IEEE/CVF InternationalConference on Computer Vision( ICCV), pp. 7202–7211( 2019)
A. Savkin, Y. Wang, S. J. Wirkert, et al.: Lidar Upsampling With Sliced Wasserstein Distance, IEEE Robotics and Automation Letters, 8 (2023):392-399
S. Elias, M. Helgesen, K. Nakashima, et al.: Fast LiDAR Upsampling using Conditional Diffusion Models, Proc. of the IEEE International Conference on Robot and Human Interactive Communication, (2024) https://doi.org/10.48550/arXiv.2405.04889
Tso-Yuan Chen, Ching-Chun Hsiao, Wen-Huang Cheng, et al.: Densityimbalance-Eased Representation for LiDAR-based Whole Scene Upsampling, 2021 International Conference on Visual Communications and Image Processing (VCIP), 2021, pp. 01-05, doi: 10.1109/VCIP53242.2021.9675334
A. Geiger, P. Lenz, and R. Urtasun: Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 3354-3361, doi: 10.1109/CVPR.2012.6248074
Get Started with the Lidar Labeler: https://jp.mathworks.com/help/lidar/ug/lidar-labeler-get-started.htm(l Accessed March 2025)
T. Cortinhal, G. Tzelepis and E. E. Aksoy: SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving, ArXiv:2003.03653 [Cs], July 9, 2020. http://arxiv.org/abs/2003.03653
A. Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao: YOLOv4: Optimal Speed and Accuracy of Object Detection, ArXiv:2004.10934 [Cs, Eess](, 2020). https://arxiv.org/abs/2004.10934
M. Simon, S. Milz, K. Amende, and Horst-Michael Gross: Complex-YOLO: Real-Time 3D Object Detection on Point Clouds. ArXiv:1803.06199[ Cs],(2018); https://arxiv.org/abs/1803.06199
Hesai and Scale.PandaSet. https://scale.com/open-datasets/pandaset (Accessed March 2025)
Y. Cao: Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019
H. Shin: Illusion and Dazzle: Adversarial Optical Channel Exploits Against Lidars for Automotive Applications, Cryptographic Hardware and Embedded Systems – CHES 2017, 2017
T. Sato: LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions, and New Attack Strategies, Proceedings 2024 Network and Distributed System Security Symposium, 2024
R. S. Hallyburton: Security Analysis of {Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles, 31st USENIX Security Symposium( USENIX Security 22), 2022
W. Xu: Analyzing and Enhancing the Security of Ultrasonic Sensors for Autonomous Vehicles, IEEE Internet of Things Journal, 2018
J. Petit: Remote Attacks on Automated Vehicles Sensors: Experiments on Camera and LiDAR, Black Hat Europe, 2015
J. Yue, K. Tanaka, G. Hirano, et al.: Chip-scale high-peak-power semiconductor/solid-state vertically integrated laser, Nat Commun 13, 5774( 2022). https://doi.org/10.1038/s41467-022-33528-x
R. Sakata, R., Ishizaki, K., De Zoysa, M. et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat Commun 11, 3487 (2020). https://doi.org/10.1038/s41467-020-17092-w
Nature Review Electrical Engineering, vol.1, pp. 802–814( 2024)